News

Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

Abstract.

"The Southern Ocean provides a vital service by absorbing about one-sixth of humankind's annual emissions of CO2. This comes with a cost – an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution."

Source: Biogeosciences
Authors: Thomas W. Trull et al.
DOI: 10.5194/bg-15-31-2018

Read the full article here.


Community composition in mangrove ponds with pulsed hypoxic and acidified conditions

Abstract.

"The potential resilience of biological communities to accelerating rates of global change has received considerable attention. We suggest that some shallow aquatic ecosystems, where temperature, dissolved oxygen (DO), and pH can exhibit extreme variation on short timescales of hours or days, provide an opportunity to develop a mechanistic understanding of species persistence and community assembly under harsh environmental conditions.  [...]"

Source: Ecosphere (ESA journal)
Authors: Keryn B. Gedan et al.
DOI: 10.1002/ecs2.2053

Read the full article here.


Evaluating the promise and pitfalls of a potential climate change–tolerant sea urchin fishery in southern California

Abstract.

"Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200–300-m depth range. [...]"

Source: ICES Journal of Marine Science
Authors: Kirk N Sato et al.
DOI: 10.1093/icesjms/fsx225

Read the full article here.


Deep oceans may acidify faster than anticipated due to global warming

Abstract.

"Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. [...]"

Source: Nature Climate Change
Authors: Chen-Tung Arthur Chen
DOI: 10.1038/s41558-017-0003-y

Read the full article here.


M/V Columbia starts its study of ocean acidification

"An Alaska state ferry recently started work doubling as an ocean research platform.

The M/V Columbia, which conducts weekly runs between Bellingham, Washington and Alaska, has been installed with a seawater monitoring system to study ocean acidification, a byproduct of human-caused climate change which could affect sea life in Alaska and around the world. [...]"

Source: Juneau Empire

Read the full article here.


A strong case for limiting climate change

"As a gigantic carbon sink, the ocean has taken up about a third of the carbon dioxide (CO2) released into the atmosphere by human activities. But when absorbed by seawater, the greenhouse gas triggers chemical reactions, causing the ocean to acidify. Ocean acidification affects ecosystems and important services the ocean provides to humankind. This includes the regulation of the Earth's climate, food provision, recreation as well as biodiversity as a condition for intact and functioning ecosystems. [...]"

Source: EurekAlert

Read the full article here.


Acidifying oceans a bad trip for marine ecosystems

"A more acidic ocean under climate change threatens to reconfigure entire ecosystems by advantaging some fish species to the detriment of others, a new study has found. The research is one of only a few that go beyond the lab to study how species interactions are changing in nature under more extreme conditions.

Researchers from the University of Adelaide and the University of Hong Kong showed that a higher concentration of carbon dioxide in the oceans, which reacts to turn seawater more acidic, favors common fish species, allowing them to double their populations. But that might also mean the downfall of rarer, subordinate competitors, leading to biodiversity loss and a total restructuring of fish communities, with numerous ecological impacts. [...]"

Source: Mongabay

Read the full article here.


Oyster reproduction is compromised by acidification experienced seasonally in coastal regions

Abstract.

"Atmospheric carbon dioxide concentrations have been rising during the past century, leading to ocean acidification (OA). Coastal and estuarine habitats experience annual pH variability that vastly exceeds the magnitude of long-term projections in open ocean regions. Eastern oyster (Crassostrea virginica) reproduction season coincides with periods of low pH occurrence in estuaries, thus we investigated effects of moderate [...] and severe OA [...] on oyster gametogenesis, fertilization, and early larval development successes. [...]"

Source: Scientific Reports
Authors: Myrina Boulais et al.
DOI: 10.1038/s41598-017-13480-3

Read the full article here.


Pteropods are excellent recorders of surface temperature and carbonate ion concentration

Abstract.

"Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). [...]"

Source: Scientific Reports
Authors: N. Keul et al.
DOI: 10.1038/s41598-017-11708-w

Read the full article here.


What Scientists Are Learning About the Impact of an Acidifying Ocean

"The effects of ocean acidification on marine life have only become widely recognized in the past decade. Now researchers are rapidly expanding the scope of investigations into what falling pH means for ocean ecosystems."

Source: NewsDeeply: Oceans Deeply

Read the full article here.


Showing 1 - 10 of 17 results.
Items per Page 10
of 2