News

Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization

Abstract.

"Ocean Anoxic Event 2 (OAE2) was a period of dramatic disruption to the global carbon cycle when massive amounts of organic matter (OM) were buried in marine sediments via complex and controversial mechanisms. Here we investigate the role of OM sulfurization, which makes OM less available for microbial respiration, in driving variable OM preservation in OAE2 sedimentary strata from Pont d’Issole (France). We find correlations between the concentration, S:C ratio, S-isotope composition, and sulfur speciation of OM suggesting that sulfurization facilitated changes in carbon burial at this site as the chemocline moved in and out of the sediments during deposition. [...]"

Source: Nature Communications
Authors: Morgan Reed Raven et al.
DOI: 10.1038/s41467-018-05943-6

Read the full article here.


Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian)

Abstract.

"The two major oceanic anoxic events of the Cretaceous, those of the Early Aptian (OAE 1a) and the Cenomanian–Turonian boundary (OAE 2), registered some of the highest temperatures reconstructed for the Cretaceous Period, and are thought to be related to the input of volcanically derived carbon dioxide from one or more Large Igneous Provinces. Widely distributed deposition of marine organic matter, the hallmark of OAEs, and intensified silicate weathering in response to a globally accelerated hydrological cycle and/or reaction of seawater with freshly extruded basalt, are both potential mechanisms whereby the content of atmospheric carbon dioxide could have been drawn down to promote cooling, on the assumption that this potential effect was not offset by increased addition of this volcanically derived greenhouse gas. [...]"

Source: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences
Author: Hugh C. Jenkyns
DOI: 10.1098/rsta.2017.0073

Read the full article here.


Lipids as indicators of nitrogen cycling in present and past anoxic oceans

Summary.

"Nitrogen (N) cycling influences primary production in the ocean and, hence, the global climate. It is performed by a variety of microorganisms, including eukaryotes, bacteria and archaea in oxic, suboxic, and anoxic waters. Our knowledge of the reactions involved in marine N cycling and its associated microorganisms has greatly increased in the last decade due to the development of multiple culture-independent methods. Among them are gene and lipid biomarkers, which hold taxonomic potential and can be successfully applied in modern day and paleoenvironmental studies. However, many aspects of N cycling and their long-term implications for the marine environment and the global climate still require more study, especially in suboxic and anoxic waters, including the oxygen-deficient zones (ODZs), which are expanding in the modern oceans.

Author: Martina Sollai

Read the full article here.


Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2

Abstract.

"Oceanic Anoxic Event 2 (OAE 2), occurring ∼94 million years ago, was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. It was typified by a rapid rise in atmospheric CO2, global warming, and marine anoxia, leading to the widespread devastation of marine ecosystems. However, the precise timing and extent to which oceanic anoxic conditions expanded during OAE 2 remains unresolved. [...]"

Source: PNAS
Authors: Matthew O. Clarkson et al.
DOI: 10.1073/pnas.1715278115

Read the full article here.


Oxygen loss could be a huge issue for oceans

"A major study into an ancient climate change event that affected a significant percentage of Earth’s oceans has brought into sharp focus a lesser-known villain in global warming: oxygen depletion. 

The study, just published in the prestigious Proceedings of the National Academy of Sciences (PNAS), examined a past period of global warming around 94 million years ago, when oceans became de-oxygenated.

This famous period in Earth’s geological history, known as an Oceanic Anoxic Event (OAE), was more severe and on much longer timescales than the current changes. But it has given the scientists studying this period an extreme case-study to help understand how the oceans are effected by high atmospheric CO2 emissions. [...]"

Source: University of Exeter News

Read the full article here.


The Northern Gulf of Mexico During OAE2 and the Relationship Between Water Depth and Black Shale Development

Abstract.

"Despite their name, Oceanic Anoxic Events (OAEs) are not periods of uniform anoxia and black shale deposition in ancient oceans. Shelf environments account for the majority of productivity and organic carbon burial in the modern ocean, and this was likely true in the Cretaceous as well. However, it is unlikely that the mechanisms for such an increase were uniform across all shelf environments. Some, like the northwest margin of Africa, were characterized by strong upwelling, but what might drive enhanced productivity on shelves not geographically suited for upwelling? [...]"

Source: Plaeoceanography
Authors: Christopher M. Lowery
DOI: 10.1002/2017PA003180

Read the full article here.


When oxygen disappeared, early marine animals really started evolving

"Animals need oxygen to survive, but a relative lack of oxygen in Earth’s ancient oceans helped early marine creatures evolve, a new study claims. Indeed, the “Cambrian explosion”—the burst of evolution about 540 million years ago that included the birth of most of the major animal groups we know today—was enabled by oxygen deprivation, the researchers say. The finding comes in the wake of a better understanding of how oxygen levels in the oceans and the atmosphere fluctuated in the deep past, and may shift how scientists think animal evolution can proceed. [...]"

Source: Science Magazine
Author: Lucas Joel
DOI: 10.1126/science.aar5252

Read the full article here.


The Northern Gulf of Mexico During OAE2 and the Relationship Between Water Depth and Black Shale Development

Abstract.

"Despite their name, Oceanic Anoxic Events (OAEs) are not periods of uniform anoxia and black shale deposition in ancient oceans. Shelf environments account for the majority of productivity and organic carbon burial in the modern ocean, and this was likely true in the Cretaceous as well. However, it is unlikely that the mechanisms for such an increase were uniform across all shelf environments. [...]"

Source: Paleoceanography
Authors: Christopher M. Lowery
DOI: 10.1002/2017PA003180

Read the full article here.


Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)

Abstract.

"The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. [...]"

Source: Science Advances
Authors: Chadlin M. Ostrander, Jeremy D. Owens and Sune G. Nielsen
DOI: 10.1126/sciadv.1701020

Read the full article here.


Study estimates oxygen loss in ancient global ocean

A loss of oxygen in global ocean seawater 94 million years ago led to a mass extinction of marine life that lasted for roughly half a million years.

Scientists have found several potential explanations for how the loss of oxygen happened. These could include enhanced volcanic activity, increased nutrients reaching the ocean, rising sea levels, and warming sea and surface temperatures. But to point a finger at any one cause (or several of them) requires knowing how fast the oxygen loss happened.

A new technique, developed by Arizona State University graduate student Chad Ostrander with colleagues at Wood Hole Oceanographic Institution (WHOI) and Florida State University (FSU), has put a timetable on the oxygen loss associated with this major ocean extinction event, which is known to science as Oceanic Anoxic Event 2.

Source: phys.org

Read the full article here.


Showing 1 - 10 of 12 results.
Items per Page 10
of 2