News

Hypoxia-tolerant zooplankton may reduce biological carbon pump efficiency in the Humboldt current system off Peru

Abstract.

"In the ocean, downward flux of particles produced in sunlit surface waters is the major component of the biological carbon pump, which sequesters atmospheric carbon dioxide and fuels deep-sea ecosystems. The efficiency of downward carbon transfer is expected to be particularly high in tropical upwelling systems where hypoxia occurring beneath the productive surface waters is thought to hamper particle consumption. However, observations of both particle feeders and carbon export in low-oxygen waters are scarce. Here, we provide evidence that hypoxia-tolerant zooplankton feed on sinking particles in the extensive Oxygen Minimum Zone (OMZ) off Peru. [...]".

 

Source: Nature
Authors: Anja Engel et al. 
DOI: https://doi.org/10.1038/s43247-023-01140-6

Read the full article here.


Carbon pump dynamics and limited organic carbon burial during OAE1a

Abstract. 

"Oceanic Anoxic Events (OAEs) are conspicuous intervals in the geologic record that are associated with the deposition of organic carbon (OC)-rich marine sediment, linked to extreme biogeochemical perturbations, and characterized by widespread ocean deoxygenation. Mechanistic links between the marine biological carbon pump (BCP), redox conditions, and organic carbon burial during OAEs, however, remain poorly constrained. In this work we reconstructed the BCP in the western Tethys Ocean across OAE1a (~120 Mya) using sediment geochemistry and OC mass accumulation rates (OCAcc). [...]".

 

Source: Wiley Online Library
Authors: Kohen W. Bauer et al.
DOI: https://doi.org/10.1111/gbi.12538

Read the full article here.


Changes in phytoplankton concentration now drive increased Arctic Ocean primary production

Abstract.

"Historically, sea ice loss in the Arctic Ocean has promoted increased phytoplankton primary production because of the greater open water area and a longer growing season. However, debate remains about whether primary production will continue to rise should sea ice decline further. Using an ocean color algorithm parameterized for the Arctic Ocean, we show that primary production increased by 57% between 1998 and 2018. Surprisingly, whereas increases were due to widespread sea ice loss during the first decade[...]"

 

Source: American Association For The Advancement Of Science 
Authors: K. M. Lewis et al.
DOI: 10.1126/science.aay8380 

Read the full article here.


Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics

Abstract.

"The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. [...]"

Source: Scientific Reports
Authors: Melissa M. Omand et al.
DOI: 10.1038/s41598-020-60424-5

Read the full article here.


Understanding the remote influences of ocean weather on the episodic pulses of particulate organic carbon flux

Abstract.

"The biological carbon pump has been estimated to export ∼5–15 Gt C yr−1 into the deep ocean, and forms the principal deep-sea food resource. Irregular, intense pulses of particulate organic carbon (POC) have been found to make up about one-third of the overall POC fluxes at a long-term deep-sea research station influenced by coastal upwelling of the California Current, Station M (34°50′N, 123° W, 4000 m depth). However, the drivers of these pulses have been challenging to quantify. [...]"

Source: Deep Sea Research Part II: Topical Studies in Oceanography
Authors: Henry A. Ruhl et al.
DOI: 10.1016/j.dsr2.2020.104741

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here