News
Subpolar gyre decadal variability explains the recent oxygenation in the Irminger Sea
Abstract.
"Accurate monitoring of the long-term trend of oxygen content at global scale requires a better knowledge of the regional oxygen variability at interannual to decadal time scale. Here, we combined the Argo dataset and repeated ship-based sections to investigate the drivers of the oxygen variability in the North Atlantic Ocean, a key region for the oxygen supply into the deep ocean. We focus on the Labrador Sea Water in the Irminger Sea over the period 1991–2018 and we show that the oxygen solubility explains less than a third of the oxygen variability. [...]".
Source: Nature
Authors: Charlène Feucher et al.
DOI: https://doi.org/10.1038/s43247-022-00570-y
Authigenic uranium deposition in the glacial North Atlantic: Implications for changes in oxygenation, carbon storage, and deep water-mass geometry
Abstract.
"Oxygen in the ocean has essential ecological and climatic functions, and can be an important indicator of deep-ocean ventilation and carbon storage. Previous studies are divided on whether the subsurface North Atlantic, which today is well-oxygenated, had higher or lower oxygen levels during the Last Glacial Maximum (LGM). Crucially, the limited number of previous reconstructions precludes any conclusions regarding basin-wide patterns in past changes in oxygenation. [...]".
Source: Science Direct
Authors: Yuxin Zhou & Jerry F. McManus
DOI: https://doi.org/10.1016/j.quascirev.2022.107914
A global viral oceanography database (gVOD)
Abstract.
"Virioplankton are a key component of the marine biosphere in maintaining diversity of microorganisms and stabilizing ecosystems. They also contribute greatly to nutrient cycles/cycling by releasing organic matter after lysis of hosts. In this study, we constructed the first global viral oceanography database (gVOD) by collecting 10 931 viral abundance (VA) data and 727 viral production (VP) data, along with host and relevant oceanographic parameters when available. Most VA data were obtained in the North Atlantic (32 %) and North Pacific (29 %) oceans, while the southeast Pacific[...]"
Source: Earth System Science Data
Authors: Le Xie et al.
DOI: https://doi.org/10.5194/essd-13-1251-2021
Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical North Atlantic Ocean
Abstract.
"Ocean chemical and physical conditions are changing. Here we show decadal variability and recent acceleration of surface warming, salinification, deoxygenation, carbon dioxide (CO2) and acidification in the subtropical North Atlantic Ocean (Bermuda Atlantic Time-series Study site; 1980s to present). Surface temperatures and salinity exhibited interdecadal variability, increased by ~0.85 °C (with recent warming of 1.2 °C) and 0.12, respectively, while dissolved oxygen levels decreased by ~8% (~2% per decade).[...]"
Source: Nature - Communications Earth and Environment
Authors: Nicholas Robert Bates et al.
DOI: https://doi.org/10.1038/s43247-020-00030-5
Contrasting decadal trends of subsurface excess nitrate in the western and eastern North Atlantic Ocean
Abstract.
"Temporal variations in excess nitrate (DINxs) relative to dissolved inorganic phosphorus (DIP) were evaluated using datasets derived from repeated measurements along meridional and zonal transects in the upper (200–600 m) North Atlantic (NAtl) between the 1980s and 2010s. The analysis revealed that the DINxs trend in the western NAtl differed from that in the eastern NAtl. In the western NAtl, which has been subject to atmospheric nitrogen deposition (AND) from the USA, the subsurface DINxs concentrations have increased over the last 2 decades. [...]"
Source: Biogeosciences
Authors: Jin-Yu Terence Yang et al.
DOI: 10.5194/bg-17-3631-2020
Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream
Abstract.
"Western boundary currents act as transport pathways for nutrient-rich waters from low to high latitudes (nutrient streams) and are responsible for maintaining midlatitude and high-latitude productivity in the North Atlantic and North Pacific. This study investigates the centennial oxygen (O2) and nutrient changes over the Northern Hemisphere in the context of the projected warming and general weakening of the Atlantic Meridional Overturning Circulation (AMOC) in a subset of Earth system models included in the CMIP5 catalogue. In all models examined, the Atlantic warms faster than the Pacific Ocean, resulting in a greater basin-scale solubility decrease. [...]"
Source: Biogeosciences
Authors: Filippos Tagklis et al.
DOI: 10.5194/bg-17-231-2020
Deep-Water Dynamics in the Subpolar North Atlantic at the End of the Quaternary
Abstract.
"In the subpolar North Atlantic, four sediment cores were taken. All of them were suitable for reconstructing the dynamics of the meridional overturning circulation in the late Quaternary. Stratigraphy of the cores was performed by carbonate analyses, study of planktonic foraminifera, and oxygen isotopic composition in Neogloboquadrina pachyderma sin. Study of benthonic foraminifera assemblages has shown significant differences in the deep-water dynamics in the late Quaternary related to water exchange between the North Atlantic and Arctic seas. [...]"
Source: Oceanology
Authors: N.P. Lukashina
DOI: 10.1134/S0001
Shift in large-scale Atlantic circulation causes lower-oxygen water to invade Canada’s Gulf of St. Lawrence
"The Gulf of St. Lawrence has warmed and lost oxygen faster than almost anywhere else in the global oceans. The broad, biologically rich waterway in Eastern Canada drains North America’s Great Lakes and is popular with fishing boats, whales and tourists.
A new study led by the University of Washington looks at the causes of this rapid deoxygenation and links it to two of the ocean’s most powerful currents: the Gulf Stream and the Labrador Current. The study, published Sept. 17 in Nature Climate Change, explains how large-scale climate change already is causing oxygen levels to drop in the deeper parts of this waterway."
Source: University of Washington
Author: Hannah Hickey
Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic
Abstract.
"Global observations show that the ocean lost approximately 2% of its oxygen inventory over the past five decades, with important implications for marine ecosystems. The rate of change varies regionally, with northwest Atlantic coastal waters showing a long-term drop that vastly outpaces the global and North Atlantic basin mean deoxygenation rates. However, past work has been unable to differentiate the role of large-scale climate forcing from that of local processes. [...]"
Source: Nature Climate Change
Auhors: Mariona Claret et al.
DOI: 10.1038/s41558-018-0263-1
Coccolithovirus facilitation of carbon export in the North Atlantic
Abstract.
"Marine phytoplankton account for approximately half of global primary productivity, making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon, which can stimulate nutrient regeneration, primary production and upper ocean respiration2 via lytic infection and the ‘virus shunt’. [...]"
Source: Nature Microbiology
Authors: Christien P. Laber
DOI: 10.1038/s41564-018-0128-4
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.