News
Development of a high-resolution marine ecosystem model for predicting the combined impacts of ocean acidification and deoxygenation
Abstract.
"An approach was developed to help evaluate and predict the combined effects of ocean acidification and deoxygenation on calcifying organisms along the coast of Japan. The Coastal and Regional Ocean COmmunity (CROCO) modeling system was set up to couple the Regional Ocean Modeling System (ROMS) to the Pelagic Interaction Scheme for Carbon and Ecosystem Studies (PISCES) biogeochemical model and used to reproduce physical and biochemical processes in the area around Miyako Bay, Iwate Prefecture, Japan. [...]".
Source: Frontiers in Marine Science
Authors: Lawrence Patrick C. Bernardo et al.
DOI: https://doi.org/10.3389/fmars.2023.1174892
Monsoon-driven seasonal hypoxia along the northern coast of Oman
Abstract.
"Dissolved oxygen and current observations from a cabled ocean observatory in the Sea of Oman show that the annual recurrence of coastal hypoxia, defined as dissolved oxygen concentrations ≤63 μM, is associated with the seasonal cycle of local monsoon winds. The observations represent the first long-term (5+ years) continuous moored observations off the northern Omani coast. During the summer/fall southwest (SW) monsoon season (Jun-Nov), winds in the Sea of Oman generate ocean currents that result in coastal upwelling of subsurface waters with low dissolved oxygen concentrations. [...]".
Source: Frontiers in Marine Science
Authors: Steven F. DiMarco et al.
DOI: https://doi.org/10.3389/fmars.2023.1248005
Driver of eustatic change during the early Aptian Oceanic Anoxic Event 1a (∼120 Ma)
Abstract.
"Sea-level changes exert an important control on oceanic circulation and climate evolution. Researchers have proposed that sea-level rise favored accumulation of sediments enriched in organic carbon during oceanic anoxic events (OAEs), although high-frequency sea-level changes and their controlling mechanism have remained poorly constrained. Here we present a detailed sedimentological and geochemical study on Aptian (Lower Cretaceous) shallow-water carbonates of the Dariyan Formation exposed in the Zagros fold belt of southern Iran. [...]".
Source: Science Direct
Authors: Yiwei Xu et al.
DOI: https://doi.org/10.1016/j.gloplacha.2023.104236
Deglacial volcanism and reoxygenation in the aftermath of the Sturtian Snowball Earth
Abstract.
"The Cryogenian Sturtian and Marinoan Snowball Earth glaciations bracket a nonglacial interval during which Demosponge and green-algal biomarkers first appear. To understand the relationships between environmental perturbations and early animal evolution, we measured sulfur and mercury isotopes from the Datangpo Formation from South China. Hg enrichment with positive Δ199Hg excursion suggests enhanced volcanism, potentially due to depressurization of terrestrial magma chambers during deglaciation. [...]".
Source: Science Advances
Authors: Menghan Li et al.
DOI: 10.1126/sciadv.adh9502
Metabolic prioritization of fish in hypoxic waters: an integrative modeling approach
Abstract.
"Marine hypoxia has had major consequences for both economically and ecologically critical fish species around the world. As hypoxic regions continue to grow in severity and extent, we must deepen our understanding of mechanisms driving population and community responses to major stressors. It has been shown that food availability and habitat use are the most critical components of impacts on individual fish leading to observed outcomes at higher levels of organization. However, differences within and among species in partitioning available energy for metabolic demands – or metabolic prioritization – in response to stressors are often ignored. [...]".
Source: Frontiers in Marine Science
Authors: Elizabeth Duskey
DOI: https://doi.org/10.3389/fmars.2023.1206506
Ocean Oxygen: the role of the Ocean in the oxygen we breathe and the threat of deoxygenation
Abstract.
"EMB Future Science Brief No. 10 highlights the most recent science on Ocean oxygen, including causes, impacts and mitigation strategies of Ocean oxygen loss, and discusses whether “every second breath we take comes from the Ocean”. It closes with key policy, management and research recommendations to address Ocean deoxygenation and communicate more accurately about the role of the Ocean in Earth’s oxygen.
The sentence “every second breath you take comes from the Ocean” is commonly used in Ocean Literacy and science communication to highlight the importance of Ocean oxygen. [...]".
Source: European Marine Board
Authors: Marilaure Grégoire et al.
DOI: 10.5281/zenodo.7941157
Extensive Accumulation of Nitrous Oxide in the Oxygen Minimum Zone in the Bay of Bengal
Abstract.
"The production by microorganisms of nitrous oxide (N2O), a trace gas contributing to global warming and stratospheric ozone depletion, is enhanced around the oceanic oxygen minimum zones (OMZs). The production constitutes an important source of atmospheric N2O. Although an OMZ is found in the northern part of the eastern Indian Ocean, the Bay of Bengal (BoB), two earlier studies conducted during the later phase of winter monsoon (February) and spring intermonsoon (March–April) found quite different magnitudes of N2O accumulation. [...]".
Source: Wiley Online Library
Authors: Sakae Toyoda et al.
DOI: https://doi.org/10.1029/2022GB007689
Decreasing O2 availability reduces cellular protein contents in a marine diatom
Abstract.
"Anthropogenic activities and climate change are exacerbating marine deoxygenation. Apart from aerobic organisms, reduced O2 also affects photoautotrophic organisms in the ocean. This is because without available O2, these O2 producers cannot maintain their mitochondrial respiration, especially under dim-light or dark conditions, which may disrupt the metabolism of macromolecules including proteins. We used growth rate, particle organic nitrogen and protein analyses, proteomics, and transcriptomics to determine cellular nitrogen metabolism of the diatom Thalassiosira pseudonana grown under three O2 levels in a range of light intensities [...]".
Source: Science Direct
Authors: Bokun Chen et al.
DOI: https://doi.org/10.1016/j.scitotenv.2023.164032
Ideas and perspectives: The fluctuating nature of oxygen shapes the ecology of aquatic habitats and their biogeochemical cycles – the aquatic oxyscape
Abstract.
"Oxygen availability is a pivotal factor for ecosystem functioning and the resistance of organisms to the effect of climate change in aquatic habitats. Although extensive work has been done to assess the effect of oxygen on marine and freshwater biota, many studies have not captured the ecological importance of oxygen variations. Overlooking the fluctuating nature of oxygen may cause potential biases in the design and implementation of management policies for aquatic habitats. Conceptual perspectives on the dynamic nature of oxygen fluctuations have been raised in the scientific community in order to enhance [...]".
Source: Biogeosciences
Authors: Marco Fusi et al.
DOI: https://doi.org/10.5194/bg-20-3509-2023
The response of nitrogen and sulfur cycles to ocean deoxygenation across the Cenomanian-Turonian boundary
Abstract.
"The Cretaceous Oceanic Anoxic Event 2 (OAE2) is a greenhouse episode of severe marine anoxia at the Cenomanian-Turonian boundary. This time interval is characterized by rising sea surface temperature, enhanced marine biological productivity, and widespread occurrence of organic-rich black shales. With an export of biological production to the deep ocean, organisms consume vast amounts of oxygen and subsequently utilize nitrate and sulfate as electron acceptors in organic matter degradation, thereby affecting biogeochemical cycles of nitrogen and sulfur. [...]".
Source: Science Direct
Authors: Ruixiang Zhai et al.
DOI: https://doi.org/10.1016/j.gloplacha.2023.104182
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.