News

Rapid nitrous oxide cycling in the suboxic ocean

Abstract.

"Nitrous oxide (N2O) is a powerful greenhouse gas and a major cause of stratospheric ozone depletion, yet its sources and sinks remain poorly quantified in the oceans. We used isotope tracers to directly measure N2O reduction rates in the eastern tropical North Pacific. Because of incomplete denitrification, N2O cycling rates are an order of magnitude higher than predicted by current models in suboxic regions, and the spatial distribution suggests strong dependence on both organic carbon and dissolved oxygen concentrations. Furthermore, N2O turnover is 20 times higher than the net atmospheric efflux. The rapid rate of this cycling coupled to an expected expansion of suboxic ocean waters implies future increases in N2O emissions. [...]"

Source: Science (2015)
Authors: Andrew R. Babbin, Daniele Bianchi, Amal Jayakumar, Bess B. Ward
DOI:10.1126/science.aaa8380

Read the full article here.


Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

Abstract.

"Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. [...]

Source: Geophysical Reasearch Letters
Authors: Xin Sun, Qixing Ji, Amal Jayakumar, Bess B. Ward
DOI: 10.1002/2017GL074355

Read the full article here.

 


Oceanic nitrogen cycling and N2O flux perturbations in the Anthropocene

Abstract.

"There is currently no consensus on how humans are affecting the marine nitrogen (N) cycle, which limits marine biological production and CO2 uptake. Anthropogenic changes in ocean warming, deoxygenation, and atmospheric N deposition can all individually affect the marine N cycle and the oceanic production of the greenhouse gas nitrous oxide (N2O). However, the combined effect of these perturbations on marine N cycling, ocean productivity, and marine N2O production is poorly understood. Here we use an Earth system model of intermediate complexity to investigate the combined effects of estimated 21st century CO2 atmospheric forcing and atmospheric N deposition.  [...]"

Source: Global Biogeochemical Cycles
Authors: A. Landolfi, C. Somes, W. Koeve, L. M. Zamora, A. Oschlies
DOI: 10.1002/2017GB005633

Full article


Low oxygen eddies in the eastern tropical North Atlantic: Implications for N2O cycling

Abstract.

"Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in the Atlantic OMZ are relatively high and low, respectively. [...]"

Source: Scientific Reports
Authors: D. S. Grundle et al.
DOI: 10.1038/s41598-017-04745-y

Full article