News

Preprint: Evolution of oxygen and stratification in the North Pacific Ocean in CMIP6 Earth System Models

Abstract.

"This study examines the linkages between the upper ocean (0–200 m) oxygen (O2) content and stratification in the North Pacific Ocean in four Earth system models (ESMs), an ocean hindcast simulation, and ocean reanalysis data. Trend and variability of oceanic O2 content are driven by the imbalance between physical supply and biological demand. The physical supply is primarily controlled by ocean ventilation, which is responsible for the transport of O2-rich surface waters into subsurface. To quantify the ocean ventilation, Isopycnic Potential Vorticity (IPV) is used as a dynamical proxy in this study. [...]".

 

Source: Biogeosciences
Authors: Lyuba Novi et al.
DOI: https://doi.org/10.5194/bg-2023-129

Read the full article here.


Preprint: Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations

Abstract.

"Understanding the response of the ocean to global warming, including the renewal of ocean waters from the surface (ventilation), is important for future climate predictions. Oxygen (O2) distributions in the ocean thermocline have proven an effective way to infer changes in ventilation because physical processes (ventilation and circulation) that supply oxygen are thought to be primarily responsible for changes in interior oxygen concentrations. Here, the focus is on the North Pacific thermocline, where some of the world ocean's largest oxygen variations have been observed. [...]".

 

Source: Biogeosciences
Authors: Sabine Mecking & Kyla Drushka
DOI: https://doi.org/10.5194/bg-2023-132

Read the full article here.


Placing North Pacific paleo-oxygenation records on a common scale using multivariate analysis of benthic foraminiferal assemblages

Abstract. 

"Dysoxic events are well-studied in Pleistocene and Holocene marine sediment records from the North Pacific using faunal, sedimentological, and geochemical paleo-oxygenation proxies. However, differences in proxy sensitivity and local conditions make it difficult to quantify the relative severity of dysoxia across the North Pacific. Here, we use multivariate analyses of taxonomically standardized benthic foraminiferal assemblages to quantitatively compare the severity and duration of dysoxic events at four intermediate depth sites within oxygen minimum zones in the Gulf of Alaska (GoA), Santa Barbara Basin, and Baja California Sur. Unlike previous faunal dissolved oxygen indices, the metric developed here incorporates the total faunal assemblage and is better correlated with co-registered geochemical proxies. [...]". 

 

Source: Science Direct

Authors: Sharon Sharon et al.

DOI: https://doi.org/10.1016/j.quascirev.2022.107412

Read the full article here.


A global viral oceanography database (gVOD)

Abstract.

"Virioplankton are a key component of the marine biosphere in maintaining diversity of microorganisms and stabilizing ecosystems. They also contribute greatly to nutrient cycles/cycling by releasing organic matter after lysis of hosts. In this study, we constructed the first global viral oceanography database (gVOD) by collecting 10 931 viral abundance (VA) data and 727 viral production (VP) data, along with host and relevant oceanographic parameters when available. Most VA data were obtained in the North Atlantic (32 %) and North Pacific (29 %) oceans, while the southeast Pacific[...]"

 

Source: Earth System Science Data 
Authors: Le Xie et al.
DOI: https://doi.org/10.5194/essd-13-1251-2021

Read the full article here.


Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern topical North Pacific Ocean oxygen minimum zone

Abstract.

"Oceanic oxygen minimum zones (OMZs) play a pivotal role in biogeochemical cycles due to extensive microbial activity. How OMZ microbial communities assemble and respond to environmental variation is therefore essential to understanding OMZ functioning and ocean biogeochemistry. Sampling along depth profiles at five stations in the eastern tropical North Pacific Ocean (ETNP), we captured systematic variations in dissolved oxygen (DO) and associated variables (nitrite, chlorophyll, and ammonium) with depth and between stations. We quantitatively analysed relationships between oceanographic gradients and microbial community assembly and activity based on paired 16S rDNA and 16S rRNA sequencing. Overall microbial community[...] "

 

Source: Society for Applied Microbiology
Authors: J. Michael Berman et al.
DOI: https://doi.org/10.1111/1462-2920.15215

Read the full article here.


Trends and decadal oscillations of oxygen and nutrients at 50 to 300 m depth in the equatorial and North Pacific

Abstract.

"A strong oxygen-deficient layer is located in the upper layers of the tropical Pacific Ocean and deeper in the North Pacific. Processes related to climate change (upper-ocean warming, reduced ventilation) are expected to change ocean oxygen and nutrient inventories. In most ocean basins, a decrease in oxygen (“deoxygenation”) and an increase in nutrients have been observed in subsurface layers. Deoxygenation trends are not linear and there could be multiple influences on oxygen and nutrient trends and variability. [...]"

Source: Biogeosciences
Authors: Lothar Stramma et al.
DOI: 10.5194/bg-17-813-2020

Read the full article here.


The influence of decadal oscillations on the oxygen and nutrient trends in the Pacific Ocean

Abstract.

"A strong oxygen deficient layer is located in the upper layer of the tropical Pacific Ocean and at deeper depths in the North Pacific. Processes related to climate change (upper ocean warming, reduced ventilation) are expected to change ocean oxygen and nutrient inventories. In most ocean basins, a decrease in oxygen (‘deoxygenation’) and an increase of nutrients has been observed in subsurface layers. Deoxygenation trends are not linear and there could be other influences on oxygen and nutrient trends and variability. Here oxygen and nutrient time series since 1950 in the Pacific Ocean were investigated at 50 to 300 m depth, as this layer provides critical pelagic habitat for biological communities. [...]"

Source: Biogeosciences
Authors: Lothar Stramma et al.
DOI: 10.5194/bg-2019-91

Read the full article here.


Enhanced North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich Stadial 1

Abstract.

"The deglacial history of CO2 release from the deep North Pacific remains unresolved. This is due to conflicting indications about subarctic Pacific ventilation changes based on various marine proxies, especially for Heinrich Stadial 1 (HS-1) when a rapid atmospheric CO2 rise occurs. Here, we use a complex Earth System Model to investigate the deglacial North Pacific overturning and its control on ocean stratification. [...]"

Source: Nature Communications
Authors: X. Gong et al.
DOI: 10.1038/s41467-019-08606-2

Read the full article here.


Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific

Abstract.

"Climate change increases exposure and bioaccumulation of pollutants in marine organisms, posing substantial ecophysiological and ecotoxicological risks. Here, we applied a trophodynamic ecosystem model to examine the bioaccumulation of organic mercury (MeHg) and polychlorinated biphenyls (PCBs) in a Northeastern Pacific marine food web under climate change. We found largely heterogeneous sensitivity in climate-pollution impacts between chemicals and trophic groups. Concentration of MeHg and PCBs in top predators, including resident killer whales, is projected to be amplified by 8 and 3%, respectively, by 2100 under a high carbon emission scenario (Representative Concentration Pathway 8.5) relative to a no-climate change control scenario. [...]"

Source: Scientific Reports
Authors: Juan José Alava et al.
DOI: 10.1038/s41598-018-31824-5

Read the full article here.


Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean

Abstract.

"Nitrogen (N) is the major limiting nutrient for phytoplankton growth and productivity in large parts of the world's oceans. Differential preferences for specific N substrates may be important in controlling phytoplankton community composition. To date, there is limited information on how specific N substrates influence the composition of naturally occurring microbial communities. We investigated the effect of nitrate ( math formula), ammonium ( math formula), and urea on microbial and phytoplankton community composition (cell abundances and 16S rRNA gene profiling) and functioning (photosynthetic activity, carbon fixation rates) in the oligotrophic waters of the North Pacific Ocean. [...]"

Source: Limonology and Oceanography
Authors: I.N. Shilova et al.
DOI: 10.1002/lno.10590

Full article


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.