Decadal variability of oxygen uptake, export, and storage in the Labrador Sea from observations and CMIP6 models


"The uptake of dissolved oxygen from the atmosphere via air-sea gas exchange and its physical transport away from the region of uptake are crucial for supplying oxygen to the deep ocean. This process takes place in a few key regions that feature intense oxygen uptake, deep water formation, and physical oxygen export. In this study we analyze one such region, the Labrador Sea, utilizing the World Ocean Database (WOD) to construct a 65–year oxygen content time series in the Labrador Sea Water (LSW) layer (0–2200 m). [...]".


Source: Frontiers in Marine Science 
Authors: Jannes Koelling et al.

Read the full article here.

Linking northeastern North Pacific oxygen changes to upstream surface outcrop variations


"Understanding the response of the ocean to global warming, including the renewal of ocean waters from the surface (ventilation), is important for future climate predictions. Oxygen distributions in the ocean thermocline have proven an effective way to infer changes in ventilation because physical processes (ventilation and circulation) that supply oxygen are thought to be primarily responsible for changes in interior oxygen concentrations. Here, the focus is on the North Pacific thermocline, where some of the world's oceans' largest oxygen variations have been observed. [...]".


Source: Biogeosciences
Authors: Sabine Mecking & Kyla Drushka

Read the full article here.

Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations


"The Mediterranean Sea is a small region of the global ocean but with a very active overturning circulation that allows surface perturbations to be transported to the interior ocean. Understanding of ventilation is important for understanding and predicting climate change and its impact on ocean ecosystems. To quantify changes of deep ventilation, we investigated the spatiotemporal variability of transient tracers (i.e., CFC-12 and SF6) observations combined with temporal evolution of hydrographic and oxygen observations in the Mediterranean Sea from 13 cruises conducted during 1987–2018, with emphasize on the update from 2011 to 2018. Spatially, both the Eastern and Western Mediterranean Deep Water (EMDW and WMDW) show a general west-to-east gradient[...]"

Source: Frontiers
Authors: Pingyang Li et al.

Read the full article here.

Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies


"Offshore Antarctic polynyas—large openings in the winter sea ice cover—are thought to be maintained by a rapid ventilation of deep-ocean heat through convective mixing. These rare phenomena may alter abyssal properties and circulation, yet their formation mechanisms are not well understood. Here we demonstrate that concurrent upper-ocean preconditioning and meteorological perturbations are responsible for the appearance of polynyas in the Weddell Sea region of the Southern Ocean. [...]"

Source: Nature
Authors: Ethan C. Campbell et al.
DOI: 10.1038/s41586-019-1294-0

Read the full article here.

Ocean ventilation and deoxygenation in a warming world: introduction and overview


"Changes of ocean ventilation rates and deoxygenation are two of the less obvious but important indirect impacts expected as a result of climate change on the oceans. They are expected to occur because of (i) the effects of increased stratification on ocean circulation and hence its ventilation, due to reduced upwelling, deep-water formation and turbulent mixing, (ii) reduced oxygenation through decreased oxygen solubility at higher surface temperature, and (iii) the effects of warming on biological production, respiration and remineralization. The potential socio-economic consequences of reduced oxygen levels on fisheries and ecosystems may be far-reaching and significant. [...]"

Source: The Royal Society
Authors: John G. Shepherd, Peter G. Brewer, Andreas Oschlies, Andrew J. Watson
DOI: 10.1098/rsta.2017.0240

Read the full article here.

Decadal oxygen change in the eastern tropical North Atlantic


"Repeat shipboard and multi-year moored observations obtained in the oxygen minimum zone (OMZ) of the eastern tropical North Atlantic (ETNA) were used to study the decadal change in oxygen for the period 2006–2015. Along 23° W between 6 and 14° N, oxygen decreased with a rate of −5.9 ± 3.5 µmol kg−1 decade−1 within the depth covering the deep oxycline (200–400 m), while below the OMZ core (400–1000 m) oxygen increased by 4.0 ± 1.6 µmol kg−1 decade−1 on average. The inclusion of these decadal oxygen trends in the recently estimated oxygen budget for the ETNA OMZ suggests a weakened ventilation of the upper 400 m, whereas the ventilation strengthened homogeneously below 400 m. [...]"

Source: Ocean Science
Authors: Johannes Hahn, Peter Brandt, Sunke Schmidtko and Gerd Krahmann
DOI: 10.5194/os-13-551-2017

Full article

Hypoxic induced decrease in oxygen consumption in cuttlefish (Sepia officinalis) is associated with minor increases in mantle octopine [...]


"The common cuttlefish (Sepia officinalis), a dominant species in the north-east Atlantic ocean and Mediterranean Sea, is potentially subject to hypoxic conditions due to eutrophication of coastal waters and intensive aquaculture. Here we initiate studies on the biochemical response to an anticipated level of hypoxia. Cuttlefish challenged for one hour at an oxygen level of 50% dissolved oxygen saturation showed a decrease in oxygen consumption of 37% associated with an 85% increase in ventilation rate.  [...]"

Source: Frontiers in Marine Physiology
Authors: Juan C. Capaz et al.
DOI: 10.3389/fphys.2017.00344

Full article


It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.

To follow GOOD on Twitter, please visit here.

To follow GOOD on Blue Sky, please visit here

Upcoming Events

« June 2024 »
Global Ocean Oxygen Network on World Ocean Day 2024
GO2NE Webinar on Ocean Deoxygenation

Go to all events