News
How ocean deoxygenation enters the global agenda
A Story of the Collaborative Research Centre "Climate-Biogeochemistry Interactions in the Tropical Ocean"
After 12 years of intensive research, the Collaborative Research Centre 754 "Climate-Biogeochemical Interactions in the Tropical Ocean" ended in winter 2019 with a final symposium in Heiligenhafen.
More than 100 scientists involved in the large-scale project over its entire running time were able to gain numerous new insights into the processes of nutrient cycling, the interaction between ocean and atmosphere and the ecosystems in the tropical oceans. Above all, however, they drew attention to a phenomenon that affects the entire ocean: global oxygen loss and the spread of oxygen minimum zones in the ocean. With this video, the SFB 754 now draws a conclusion and at the same time points out the new research tasks that have resulted from its work. These include improved ocean observation and the question of how to prevent further oxygen loss.
For more information please look at www.sfb754.de
For a german version of the video please follow this link.
Observing phytoplankton via satellite
"Thanks to a new algorithm, researchers can now use satellite data to determine in which parts of the ocean certain types of phytoplankton are dominant. In addition, they can identify toxic algal blooms and assess the effects of global warming on marine plankton, allowing them to draw conclusions regarding water quality and the ramifications for the fishing industry. [...]"
Source: Science Daily
Sweden becomes latest nation to join Global Ocean Alliance
“Sweden together with Fiji, hosted the first UN ocean conference in 2017, and we firmly believe we need more international cooperation and substantially increased ambitions to help our ocean survive under the increasing pressures of overfishing, pollution and climate change,” said Swedish Minister for Environment and Climate, Isabella Lövin. [...]"
Source: Oceanographic
Application of geoacoustic inference to assess the diurnal effects of photosynthetic activity in a seagrass meadow
Abstract.
"Seagrasses provide a multitude of ecosystem services: they alter water flow, cycle nutrients, stabilize sediments, support the food web structure, and provide a critical habitat for many animals. However, due to threats to seagrass meadows and their associated ecosystems, these habitats are declining globally. Acoustical methods can be a powerful remote sensing tool to efficiently monitor seagrass meadows, alleviating the problem of space and time aliasing associated with traditional spot measurements. [...]"
Source: Earth and Space Science Open Archive
Authors: Megan Ballard et al.
DOI: 10.1002/essoar.10502265.1
Tracer Versus Observationally-Derived Constraints on Ocean Mixing Parameters in an Adjoint-Based Data Assimilation Framework
Abstract.
"This study investigates the possibility of using an ocean parameter and state estimation framework to improve knowledge of mixing parameters in the global ocean. Multiple sources of information about two ocean mixing parameters, the diapycnal diffusivity and the Redi coefficient, are considered. It is first established that diapycnal diffusivities derived from multiple observational data sets with a strain-based parameterization of finescale hydrographic structure can be used to ameliorate model biases in diapycnal diffusivities from the Estimating the Circulation & Climate of the Ocean (ECCO) framework and the GEOS-5 coupled Earth system model. [...]"
Source: Earth and Space Science Open Archive
Authors: David Trossman et al.
DOI: 10.1002/essoar.10502123.1
Understanding Long Island Sound's 'dead zones'
"For the past 25 years, the Environmental Protection Agency and the Connecticut Department of Energy and Environmental Protection have been diligently collecting water samples each month in Long Island Sound (LIS). Recently, the data have been compiled and analyzed, by UConn associate professors of Marine Science Penny Vlahos and Michael Whitney, and other team members, who have begun the task of digging into the data to better understand the biogeochemistry of the Sound. Part of the analysis, called "Nitrogen Budgets for LIS," has been published in the journal Estuarine, Coastal and Shelf Science. [...]"
Source: Phys.org
Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition
Abstract.
"The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) – levels of which increase as the ocean warms and releases gases – as a whole ocean thermometer. [...]"
Source: Scientific Reports
Authors: L. Resplandy et al.
DOI: 10.1038/s41598-019-56490-z
Multidisciplinary Observing in the World Ocean’s Oxygen Minimum Zone Regions: From Climate to Fish — The VOICE Initiative
Abstract.
"Multidisciplinary ocean observing activities provide critical ocean information to satisfy ever-changing socioeconomic needs and require coordinated implementation. The upper oxycline (transition between high and low oxygen waters) is fundamentally important for the ecosystem structure and can be a useful proxy for multiple observing objectives connected to eastern boundary systems (EBSs) that neighbor oxygen minimum zones (OMZs). [...]"
Source: Frontiers in Marine Science
Authors: Véronique Garçon et al.
DOI: 10.3389/fmars.2019.00722
Marine animals hold promise for extending ocean monitoring
"An international team of researchers led by the University of Exeter suggests that a wide variety of marine species could be used for monitoring the world's oceans. Using electronic tags, scientists could exploit the natural behavior of sharks, penguins, turtles, seals and other species to fill gaps in our knowledge of the seas.
With three-quarters of the Earth's surface covered with water, having a comprehensive understanding of the oceans is very important in dealing with everything from fishing quotas to climate change. The problem is that the oceans are much bigger than most people realize and many parts aren't easily, if at all, accessible."
Source: New Atlas
Ocean studies look at microscopic diversity and activity across entire planet
"In an effort to reverse the decline in the health of the world's oceans, the United Nations (UN) has declared 2021 to 2030 to be the Decade of Ocean Science for Sustainable Development. One key requirement for the scientific initiative is data on existing global ocean conditions. An important trove of data is already available thanks to the Tara Oceans expedition, an international, interdisciplinary enterprise that collected 35,000 samples from all the world's oceans between 2009 and 2013. The samples were collected by researchers aboard one schooner, the Tara, at depths ranging from the surface to 1,000 meters deep. [...]"
Source: Science Daily
The Development and Validation of a Profiling Glider Deep ISFET-Based pH Sensor for High Resolution Observations of Coastal and Ocean Acidification
Abstract.
"Coastal and ocean acidification can alter ocean biogeochemistry, with ecological consequences that may result in economic and cultural losses. Yet few time series and high resolution spatial and temporal measurements exist to track the existence and movement of water low in pH and/or carbonate saturation. Past acidification monitoring efforts have either low spatial resolution (mooring) or high cost and low temporal and spatial resolution (research cruises). [...]"
Source: Frontiers in Marine Science
Authors: Grace K. Saba et al.
DOI: 10.3389/fmars.2019.00664
Present climate trends and variability in thermohaline properties of the northern Adriatic shelf
Abstract.
"The paper documents seasonality, interannual-to-decadal variability, and trends in temperature, salinity, and density over a transect in the shallow northern Adriatic Sea (Mediterranean Sea) between 1979 and 2017. The amplitude of seasonality decreases with depth and is much larger in temperature and density than in salinity. [...]"
Source: Ocean Science
Authors: Ivica Vilibić et al.
DOI: 10.5194/os-15-1351-2019
Ocean-Atmosphere Observations in Philippine Sea by Moored Buoy
Abstract.
"Offequatorial extension of equatorial buoy arrays such as Tropical Atmosphere and Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) buoy array is required to monitor global and regional climates. On December 3, 2016, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) deployed a moored buoy (Ph buoy) at 13°N, 137° E in the Philippine Sea and are measuring temperature, salinity, and dissolved oxygen concentration from the sea surface to 300 m and atmospheric parameters. [...]"
Source: MTS/IEEE Kobe Techno-Oceans (OTO), 2018 OCEANS
Authors: Akira Nagano et al.
DOI: 10.1109/OCEANSKOBE.2018.8558886
Deep Atlantic mysteries unveiled in the face of climate change
"ATLAS is one of these projects you can’t do justice to in a single-page article. For over 3.5 years now, a consortium of multinational industries, SMEs, governments and academia have been sailing across the Atlantic to assess its deep-sea ecosystems. In doing so, they’ve already managed to deeply enhance our understanding of the consequences of climate change as well as inform the development of better management policies and practices. [...]"
Source: Cordis
Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations:
The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans
Abstract.
"The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. [...]"
Source: Frontiers in Marine Science
Authors: Tobias Steinhoff et al.
DOI: 10.3389/fmars.2019.00544
Chinese Scientists Develop Online Monitoring Instruments for Ocean Environmental Safety
"Chinese scientists have developed an online system to monitor marine-biochemical elements, according to Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, who led the project. The research team developed the online monitoring instruments by integrating three measurement modules namely, the chlorophyll module, productivity module and dissolved oxygen module, which are all developed by the team itself. [...]"
Source: Chinese Academy of Sciences
Ferry in Alaska monitors ocean acidification
"The last two years MV Columbia records the ocean’s vitals every three minutes, along a 1,600-kilometer route through the Inside Passage. This includes the coastal region from Puget Sound to the Alaska Panhandle. The ship measures the sea's temperature, salinity, dissolved oxygen content, and carbon dioxide concentration, aiming to monitor ocean acidification. [...]"
Source: Safety4Sea
Global Perspectives on Observing Ocean Boundary Current Systems
Abstract.
"Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations. [...]"
Source: Frontiers in Marine Science
Authors: Robert E. Todd et al.
DOI: 10.3389/fmars.2019.00423
NASA targets coastal ecosystems with new space sensor
"NASA has selected a space-based instrument under its Earth Venture Instrument (EVI) portfolio that will make observations of coastal waters to help protect ecosystem sustainability, improve resource management, and enhance economic activity. The selected Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR) instrument, led by principal investigator Joseph Salisbury at the University of New Hampshire, Durham, will provide unique observations of ocean biology, chemistry, and ecology in the Gulf of Mexico, portions of the southeastern United States coastline, and the Amazon River plume—where the waters of the Amazon River enter the Atlantic Ocean.[...]"
Source: phys.org
On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array
Abstract.
"The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. [...]"
Source: Frontiers in Marine Science
Authors: Dean Roemmich et al.
DOI: 10.3389/fmars.2019.00439
Integrating Biogeochemistry and Ecology Into Ocean Data Assimilation Systems
Abstract.
"Monitoring and predicting the biogeochemical state of the ocean and marine ecosystems is an important application of operational oceanography that needs to be expanded. The accurate depiction of the ocean’s physical environment enabled by Global Ocean Data Assimilation Experiment (GODAE) systems, in both real-time and reanalysis modes, is already valuable for various applications, such as the fishing industry and fisheries management. However, most of these applications require accurate estimates of both physical and biogeochemical ocean conditions over a wide range of spatial and temporal scales. [...]"
Source: Oceanography
Authors: Pierre Brasseur et al.
DOI: 10.5670/oceanog.2009.80
Coastal Mooring Observing Networks and Their Data Products: Recommendations for the Next Decade
Abstract.
"Instrumented moorings (hereafter referred to as moorings), which are anchored buoys or an anchored configuration of instruments suspended in the water column, are highly valued for their ability to host a variety of interchangeable oceanographic and meteorological sensors. This flexibility makes them a useful technology for meeting end user and science-driven requirements. [...]"
Source: Frontiers in Marine Science
Authors: Kathleen Bailey et al.
DOI: 10.3389/fmars.2019.00180
A Three-Dimensional Mapping of the Ocean Based on Environmental Data
Abstract.
"The existence, sources, distribution, circulation, and physicochemical nature of macroscale oceanic water bodies have long been a focus of oceanographic inquiry. Building on that work, this paper describes an objectively derived and globally comprehensive set of 37 distinct volumetric region units, called ecological marine units (EMUs). They are constructed on a regularly spaced ocean point-mesh grid, from sea surface to seafloor, and attributed with data from the 2013 World Ocean Atlas version 2. The point attribute data are the means of the decadal averages from a 57-year climatology of six physical and chemical environment parameters (temperature, salinity, dissolved oxygen, nitrate, phosphate, and silicate). [...]"
Source: Oceanography
Authors: Roger G. Sayre
DOI: 10.5670/oceanog.2017.116
Water quality measurements in San Francisco Bay by the U.S. Geological Survey, 1969–2015
Abstract.
The U.S. Geological Survey (USGS) maintains a place-based research program in San Francisco Bay (USA) that began in 1969 and continues, providing one of the longest records of water-quality measurements in a North American estuary. Constituents include salinity, temperature, light extinction coefficient, and concentrations of chlorophyll-a, dissolved oxygen, suspended particulate matter, nitrate, nitrite, ammonium, silicate, and phosphate.
Source: Scientific Data
Authors: Tara S. Schraga & James E. Cloern
DOI: 10.1038/sdata.2017.98
Project: Kelp Forest Array
The Kelp Forest Array (KFA) is a state-of-the-art cabled platform for observational and experimental science aimed at monitoring and understanding local impacts of global climate change. Increasing climate change and ocean acidification pressures require the establishment of long-term, baseline monitoring methods to document how a currently healthy system changes and to understand effects of climate change in relation to this natural variability. Current monitoring practices limit resolution and longevity of baseline data sets.
Dissolved Oxygen Sensor in Animal-Borne Instruments: An Innovation for Monitoring the Health of Oceans
Abstract.
"The current decline in dissolved oxygen concentration within the oceans is a sensitive indicator of the effect of climate change on marine environment. However the impact of its declining on marine life and ecosystems’ health is still quite unclear because of the difficulty in obtaining in situ data, especially in remote areas, like the Southern Ocean (SO). Southern elephant seals (Mirounga leonina) proved to be a relevant alternative to the traditional oceanographic platforms to measure physical and biogeochemical structure of oceanic regions rarely observed. In this study, we use a new stage of development in biologging technology to draw a picture of dissolved oxygen concentration in the SO. [...]"
Source: PLOS
Authors: Frederic Bailleul, Jade Vacquie-Garcia, Christophe Guinet
DOI: 10.1371/journal.pone.0132681
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.