News

Oxygen Minimum Zone Contrasts between the Arabian Sea and the Bay of Bengal Implied by Differences in Remineralization Depth

Abstract.

"The combination of high primary productivity and weak ventilation in the Arabian Sea (AS) and Bay of Bengal (BoB) generates vast areas of depleted oxygen, known as Oxygen Minimum Zones (OMZs). The AS OMZ is the world's thickest and hosts up to 40% of global denitrification. In contrast, the OMZ in the BoB is weaker and denitrification free. Using a series of model simulations, we show that the deeper remineralization depth (RD) in the BoB, potentially associated with organic matter aggregation with riverine mineral particles, contributes to weaken its OMZ. [...]"

Source: Geophysical Research Letters
Authors: Muchamad Al Azhar, Zouhair Lachkar, Marina Lévy, Shafer Smith
DOI: 10.1002/2017GL075157

Read the full article here.


A Giant Blob of Floodwater From Harvey Is Still Moving Through the Gulf

"The rain began on August 25, and it would fall, remarkably, for four more days. We know now that Hurricane Harvey dumped as much as 60 inches of rain over parts of Texas. Twenty trillion gallons in all. The equivalent of the entire Chesapeake Bay. Enough to push the Earth’s crust down two centimeters. [...]

What oceanographers do know about the interface of freshwater and ocean comes from studying rivers that naturally empty into the sea. The key is density. Because freshwater lacks dissolved salt, it is less dense and floats atop seawater. It becomes a barrier between the air and the ocean water, which can have nasty consequences. “The freshwater sitting on the salty water cuts off the oxygen from the atmosphere getting into the ocean, and then you get the dead zone,” says Steve DiMarco [...]"

Source: The Atlantic

Read the full article here.


Temporal variation in pelagic food chain length in response to environmental change

Abstract.

"Climate variability alters nitrogen cycling, primary productivity, and dissolved oxygen concentration in marine ecosystems. We examined the role of this variability (as measured by six variables) on food chain length (FCL) in the California Current (CC) by reconstructing a time series of amino acid–specific δ15N values derived from common dolphins, an apex pelagic predator, and using two FCL proxies.  [...]"

Source: Science Advances
Authors: Rocio I. Ruiz-Cooley et al.
DOI: 10.1126/sciadv.1701140

Read the full article here.


Exposure to elevated pCO2 does not exacerbate reproductive suppression of Aurelia aurita jellyfish polyps in low oxygen environments

Abstract.

"Eutrophication-induced hypoxia is one of the primary anthropogenic threats to coastal ecosystems. Under hypoxic conditions, a deficit of O2 and a surplus of CO2 will concurrently decrease pH, yet studies of hypoxia have seldom considered the potential interactions with elevated pCO2 (reduced pH). Previous studies on gelatinous organisms concluded that they are fairly robust to low oxygen and reduced pH conditions individually, yet the combination of stressors has only been examined for ephyrae. [...]"

Source: Marine Ecology Progress Series
Authors: Laura M. Treible et al.
DOI: 10.3354/meps12298

Read the full article here.


Acidifying oceans a bad trip for marine ecosystems

"A more acidic ocean under climate change threatens to reconfigure entire ecosystems by advantaging some fish species to the detriment of others, a new study has found. The research is one of only a few that go beyond the lab to study how species interactions are changing in nature under more extreme conditions.

Researchers from the University of Adelaide and the University of Hong Kong showed that a higher concentration of carbon dioxide in the oceans, which reacts to turn seawater more acidic, favors common fish species, allowing them to double their populations. But that might also mean the downfall of rarer, subordinate competitors, leading to biodiversity loss and a total restructuring of fish communities, with numerous ecological impacts. [...]"

Source: Mongabay

Read the full article here.


Oyster reproduction is compromised by acidification experienced seasonally in coastal regions

Abstract.

"Atmospheric carbon dioxide concentrations have been rising during the past century, leading to ocean acidification (OA). Coastal and estuarine habitats experience annual pH variability that vastly exceeds the magnitude of long-term projections in open ocean regions. Eastern oyster (Crassostrea virginica) reproduction season coincides with periods of low pH occurrence in estuaries, thus we investigated effects of moderate [...] and severe OA [...] on oyster gametogenesis, fertilization, and early larval development successes. [...]"

Source: Scientific Reports
Authors: Myrina Boulais et al.
DOI: 10.1038/s41598-017-13480-3

Read the full article here.


Nitrogen losses in sediments of the East China Sea: Spatiotemporal variations, controlling factors and environmental implications

Abstract.

"Global reactive nitrogen (N) has increased dramatically in coastal marine ecosystems over the past decades and caused numerous eco-environmental problems. Coastal marine sediment plays a critical role in N losses via denitrification and anaerobic ammonium oxidation (anammox) and release of nitrous oxide (N2O). However, both the magnitude and contributions of denitrification, anammox, and N2O production in sediments still remain unclear, causing uncertainty in defining the N budget for coastal marine ecosystems. [...]"

Source: Biogeosciences
Authors: Xianbiao Lin et al.
DOI: 10.1002/2017JG004036

Read the full article here.


Methane fluxes from coastal sediments are enhanced by macrofauna

Abstract.

"Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. [...]"

Source: Scientific Reports
Authors: Stefano Bonaglia et al.
DOI: 10.1038/s41598-017-13263-w

Read the full article here.


Pteropods are excellent recorders of surface temperature and carbonate ion concentration

Abstract.

"Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). [...]"

Source: Scientific Reports
Authors: N. Keul et al.
DOI: 10.1038/s41598-017-11708-w

Read the full article here.


The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature

Abstract.

"Anthropogenic inputs are increasing the CO2 content of the atmosphere, and the CO2 and total inorganic C in the surface ocean and, to a lesser degree, the deep ocean. The greenhouse effect of the increased CO2 (and, to a lesser extent, other greenhouse gases) is very probably the major cause of present global warming. The warming increases temperature of the atmosphere and the surface ocean to a greater extent than the deep ocean, with shoaling of the thermocline, decreasing nutrient flux to the surface ocean where there is greater mean photosynthetic photon flux density. [...]"

Source: European Journal of Phycology 
Author: John A. Raven
DOI: 10.1080/09670262.2017.1362593

Read the full article online.


Showing 191 - 200 of 361 results.
Items per Page 10
of 37