News

Oxygen minimum zones in the early Cambrian ocean

Abstract.

"The relationship between the evolution of early animal communities and oceanic oxygen levels remains unclear. In particular, uncertainty persists in reconstructions of redox conditions during the pivotal early Cambrian (541-510 million years ago, Ma), where conflicting datasets from deeper marine settings suggest either ocean anoxia or fully oxygenated conditions. By coupling geochemical palaeoredox proxies with a record of organic-walled fossils from exceptionally well-defined successions of the early Cambrian Baltic Basin, we provide evidence for the early establishment of modern-type oxygen minimum zones (OMZs). [...]"

Source: Geochemical Perspectives Letters 
Authors: R. Guilbaud et al.
DOI: 10.7185/geochemlet.1806

Read the full article here.


Chesapeake Bay: Larger-than-average summer 'dead zone' forecast for 2018 after wet spring

"Ecologists from the University of Michigan and the University of Maryland Center for Environmental Science are forecasting a larger-than-average Chesapeake Bay "dead zone" in 2018, due to increased rainfall in the watershed this spring.
 

This summer's Chesapeake Bay hypoxic or dead zone, an area of low to no oxygen that can kill fish and other aquatic life, is expected to be about 1.9 cubic miles (7.9 cubic kilometers), according to the forecast released today by the two universities. [...]"

Source: Phys.org

Read the full article here.


Diapycnal dissolved organic matter supply into the upper Peruvian oxycline

Abstract.

"The Eastern Tropical South Pacific (ETSP) hosts the Peruvian upwelling system, which represents one of the most productive areas in the world ocean. High primary production followed by rapid heterotrophic utilization of organic matter supports the formation of one of the most intense oxygen minimum zones (OMZ) in the world ocean where dissolved oxygen (O2) concentrations reach well below 1 µmol kg−1. The high productivity leads to an accumulation of dissolved organic matter (DOM) in the surface layers that may serve as a substrate for heterotrophic respiration.  [...]"

Source: Biogeosciences
Authors: lexandra N. Loginova et al.
DOI: 10.5194/bg-2018-284

Read the full article here.


Ventilation of oxygen to oxygen minimum zone due to anticyclonic eddies in the Bay of Bengal

Abstract.

"Intense oxygen minimum zone (OMZ) occurs in the mid‐depth of the Eastern Tropical Pacific (ETP), Arabian Sea (AS), and Bay of Bengal (BoB). However, the occurrence of anammox/denitrification was reported only in the ETP and AS and its absence in the BoB is attributed to presence of traces of dissolved oxygen (DO). Anticyclonic Eddies (ACE) supply high nutrient, organic‐rich and oxygen poor waters from the coastal upwelling regions leading to strengthening of OMZ in the offshore of AS and ETP.  [...]"

Source: Biogeosciences
Authors: V. V. S. S. Sarma, T. V. S. Udaya Bhaskar
DOI: 10.1029/2018JG004447

Read the full article here.


Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center

Abstract.

"Biogeochemistry of oxygen minimum zone (OMZ) sediments, which are characterized by high input of labile organic matter, have crucial bearings on the benthic biota, gas and metal fluxes across the sediment-water interface, and carbon-sulfur cycling. Here we couple pore-fluid chemistry and comprehensive microbial diversity data to reveal the sedimentary carbon-sulfur cycle across a water-depth transect covering the entire thickness of eastern Arabian Sea OMZ, off the west coast of India. [...]"

Source: Scientific Reports
Authors: Svetlana Fernandes et al.
DOI: 10.1038/s41598-018-27002-2

Read the full article here.


Climate and marine biogeochemistry during the Holocene from transient model simulations

Abstract.

"Climate and marine biogeochemistry changes over the Holocene are investigated based on transient global climate and biogeochemistry model simulations over the last 9500 years. The simulations are forced by accelerated and non-accelerated orbital parameters, respectively, and atmospheric pCO2, CH4, and N2O. The analysis focusses on key climatic parameters of relevance to the marine biogeochemistry, and on the physical and biogeochemical processes that drive atmosphere–ocean carbon fluxes and changes in the oxygen minimum zones (OMZs). [...]"

Source: Biogeosciences
Authors: Joachim Segschneider, Birgit Schneider, and Vyacheslav Khon
DOI: 10.5194/bg-15-3243-2018

Read the full article here.


Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone

Abstract.

"Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP‐OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical‐equatorial pathway, and (3) derive a refined annual‐mean oxygen budget for the ESP‐OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical‐equatorial advection, with more than one‐third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). [...]"

Source: Oceans
Authors: P. J. Llanillo et al.
DOI: 10.1002/2017JC013509

Read the full article here.


Will ocean zones with low oxygen levels expand or shrink?

"Computer simulations show that areas of the ocean that have low levels of dissolved oxygen will expand, but then shrink, in response to global warming — adding to an emerging picture of the finely balanced processes involved.

Global warming has reduced the amount of dissolved oxygen in the ocean by 2% since 1960. A major concern is that the rate of loss of dissolved oxygen has already increased by up to 20% in tropical waters, expanding the volume of regions called oxygen minimum zones (OMZs), where levels of dissolved oxygen are already very low."

Source: Nature
Authors: Laure Resplandy
DOI: 10.1038/d41586-018-05034-y

Read the full article here.


Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria

Abstract.

"Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. [...]"

Source: Nature Communications
Authors: Cameron M. Callbeck et al.
DOI: 10.1038/s41467-018-04041-x

Read the full article here.


Will ocean zones with low oxygen levels expand or shrink?

"Computer simulations show that areas of the ocean that have low levels of dissolved oxygen will expand, but then shrink, in response to global warming — adding to an emerging picture of the finely balanced processes involved.

Global warming has reduced the amount of dissolved oxygen in the ocean by 2% since 1960. A major concern is that the rate of loss of dissolved oxygen has already increased by up to 20% in tropical waters, expanding the volume of regions called oxygen minimum zones (OMZs), where levels of dissolved oxygen are already very low. [...]"

Source: nature.com

Read the full article here.


Showing 1 - 10 of 67 results.
Items per Page 10
of 7