News

(2010) The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry

Abstract.

"Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. [...]"

Source: Science
Author: Scott C. Doney
DOI: 10.1126/science.1185198

Read the full article here.


Acid coastal seas off US putting common fish species at risk

"Scientists have shown that coastal waters and river estuaries can exhibit unique vulnerabilities to acidification than offshore waters. This acidification, detected in waters off the United States West Coast and the Gulf of Mexico, can lead to disorientation and cognitive problems in some marine fish species, such as salmon, sharks, and cod. This work is presented at the Goldschmidt Conference in Boston.
 

Scientists have recently discovered that marine creatures can be adversely affected by hypercapnia, a condition of too much dissolved CO2 in seawater (CO2 partial pressure, or pCO2). When this level rises above 1000 micro atmospheres (1000 μatm), some fish species suffer cognitive problems and disorientation, such as losing their way or even swimming towards predators. Surface ocean CO2 partial pressures tend to be around 400 μatm, so until now scientists have thought that hypercapnia was a problem which would only become apparent over time in subsurface waters. [...]"

Source: Phys.org

Read the full article here.


Mn∕Ca intra- and inter-test variability in the benthic foraminifer Ammonia tepida

Abstract.

"The adaptation of some benthic foraminiferal species to low-oxygen conditions provides the prospect of using the chemical composition of their tests as proxies for bottom water oxygenation. Manganese may be particularly suitable as such a geochemical proxy because this redox element is soluble in reduced form (Mn2+) and hence can be incorporated into benthic foraminiferal tests under low-oxygen conditions. [...]"

Source: Biogeosciences
Authors: Jassin Petersen et al.
DOI: 10.5194/bg-15-331-2018

Read the full article here.


Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay

Abstract.

"The combined effects of anthropogenic and biological CO2 inputs may lead to more rapid acidification in coastal waters compared to the open ocean. It is less clear, however, how redox reactions would contribute to acidification. Here we report estuarine acidification dynamics based on oxygen, hydrogen sulfide (H2S), pH, dissolved inorganic carbon and total alkalinity data from the Chesapeake Bay, where anthropogenic nutrient inputs have led to eutrophication, hypoxia and anoxia, and low pH. [...]"

Source: Nature Communications
Authors: Wei-Jun Cai
DOI: 10.1038/s41467-017-00417-7

Read the full article here.


The influence of variable slope-water characteristics on dissolved oxygen levels in the northern California Current System

Abstract.

"Observations have suggested a trend of decreasing dissolved oxygen (DO) and increasing spiciness in summertime mid-depth slope waters and bottom shelf waters along the United States west coast over the past 50 years, but they have also demonstrated a large amount of interannual and decadal variability. Shelf bottom water and slope water properties can be influenced by both local and remote effects, including changes in circulation or changes in the characteristics of the source waters supplying the region. [...]"

Source: Oceans
Authors: Scott M. Durski et al.
DOI: 10.1002/2017JC013089

Read the full article here.


Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously

Abstract.

"Nitrogen (N) input to the coastal oceans has increased considerably because of anthropogenic activities, however, concurrent increases have not occurred in open oceans. It has been suggested that benthic denitrification in sandy coastal sediments is a sink for this N. Sandy sediments are dynamic permeable environments, where electron acceptor and donor concentrations fluctuate over short temporal and spatial scales. The response of denitrifiers to these fluctuations are largely unknown, although previous observations suggest they may denitrify under aerobic conditions. We examined the response of benthic denitrification to fluctuating oxygen concentrations, finding that denitrification not only occurred at high O2 concentrations but was stimulated by frequent switches between oxic and anoxic conditions. [...]"

Source: The ISME Journal
Authors: Hannah K Marchant et al.
DOI: 10.1038/ismej.2017.51

Full article