News

Projected Centennial Oxygen Trends and Their Attribution to Distinct Ocean Climate Forcings

Abstract.

"We explore centennial changes in tropical Pacific oxygen (O2) using numerical models to illustrate the dominant patterns and mechanisms under centennial climate change. Future projections from state‐of‐the‐art Earth System Models exhibit significant model to model differences, but decreased solubility and weakened ventilation together deplete thermocline O2 in middle to high latitudes. In contrast, the tropical thermocline O2undergoes much smaller changes or even a slight increase. [...]"

Source: Global Biogeochemical Cycles
Authors: Yohei Takano, Takamitsu Ito & Curtis Deutsch
DOI: 10.1029/2018GB005939

Read the full article here.


Shift in large-scale Atlantic circulation causes lower-oxygen water to invade Canada’s Gulf of St. Lawrence

"The Gulf of St. Lawrence has warmed and lost oxygen faster than almost anywhere else in the global oceans. The broad, biologically rich waterway in Eastern Canada drains North America’s Great Lakes and is popular with fishing boats, whales and tourists.

A new study led by the University of Washington looks at the causes of this rapid deoxygenation and links it to two of the ocean’s most powerful currents: the Gulf Stream and the Labrador Current. The study, published Sept. 17 in Nature Climate Change, explains how large-scale climate change already is causing oxygen levels to drop in the deeper parts of this waterway."

Source: University of Washington
Author: Hannah Hickey

Read the full article here.


Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies

Abstract.

"Because of anthropogenic global warming, the world ocean is currently losing oxygen. This trend called ocean deoxygenation is particularly pronounced in low-latitude upwelling-related oxygen minimum zones (OMZs). In these areas, the temperature-related oxygen drawdown is additionally modulated by biogeochemical feedback mechanisms between sedimentary iron (Fe) and phosphorus release, water column nitrogen cycling and primary productivity. Similar feedbacks were likely active during past periods of global warming and oceandeoxygenation. However, their integrated role in amplifying or mitigating climate change-driven ocean anoxia has not been evaluated in a systematic fashion. [...]"

Source: Earth-Science Reviews
Author: Florian Scholz
DOI: 10.1016/j.earscirev.2018.08.002

Read the full article here.


Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum

Abstract.

"The consequences of global warming for fisheries are not well understood, but the geological record demonstrates that carbon cycle perturbations are frequently associated with ocean deoxygenation. Of particular interest is the Paleocene-Eocene Thermal Maximum (PETM), where the carbon dioxide input into the atmosphere was similar to the IPCC RCP8.5 emission scenario. Here we present sulfur-isotope data that record a positive 1 per mil excursion during the PETM. Modeling suggests that large parts of the ocean must have become sulfidic. [...]"

Source:Science
Authors: Weiqi Yao, Adina Paytan, Ulrich G. Wortmann
DOI: 10.1126/science.aar8658

Read the full article here.


Increased biofilm formation due to high-temperature adaptation in marine Roseobacter

Abstract.

"Ocean temperatures will increase significantly over the next 100 years due to global climate change. As temperatures increase beyond current ranges, it is unclear how adaptation will impact the distribution and ecological role of marine microorganisms. To address this major unknown, we imposed a stressful high-temperature regime for 500 generations on a strain from the abundant marine Roseobacter clade. High-temperature-adapted isolates significantly improved their fitness but also increased biofilm formation at the air–liquid interface.  [...]"

Source: Nature Microbiology
Authors: Alyssa G. Kent et al.
DOI: 10.1038/s41564-018-0213-8

Read the fulll article here.


Scientists draw new connections between climate change and warming oceans

"Earth scientists exploring how ocean chemistry has evolved found similarities between an event 55 million years ago and current predicted trajectories of planet temperatures, with regards to inputs of CO2 into the atmosphere and oxygen levels in the oceans. As the oceans warm, oxygen decreases while hydrogen sulfide increases, making the oceans toxic and putting marine species at risk."

Source: Science Daily (University of Toronto)

Read the full article here.


Middle Eocene greenhouse warming facilitated by diminished weathering feedback

Abstract.

"The Middle Eocene Climatic Optimum (MECO) represents a ~500-kyr period of global warming ~40 million years ago and is associated with a rise in atmospheric CO2 concentrations, but the cause of this CO2 rise remains enigmatic. Here we show, based on osmium isotope ratios (187Os/188Os) of marine sediments and published records of the carbonate compensation depth (CCD), that the continental silicate weathering response to the inferred CO2 rise and warming was strongly diminished during the MECO—in contrast to expectations from the silicate weathering thermostat hypothesis. [...]"

Source: Nature Communications
Authors: Robin van der Ploeg et al.
DOI: 10.1038/s41467-018-05104-9

Read the full article here.


Large-scale ocean deoxygenation during the Paleocene-Eocene Thermal Maximum

Abstract.

"The consequences of global warming for fisheries are not well understood, but the geological record demonstrates that carbon cycle perturbations are frequently associated with ocean deoxygenation. Of particular interest is the Paleocene-Eocene Thermal Maximum (PETM) where the CO2 input into the atmosphere was similar to the IPCC RCP8.5 emission scenario. Here we present sulfur-isotope data which record a positive 1 ‰ excursion during the PETM. Modeling suggests that significant parts of the ocean must have become sulfidic. The toxicity of hydrogen sulfide will render two of the largest and least explored ecosystems on Earth, the mesopelagic and bathypelagic zones, uninhabitable by multi-cellular organisms. This will affect many marine species whose eco-zones stretch into the deep ocean. [...]"

Source: Science  
Authors: Weiqi Yao, Adina Paytan, Ulrich G. Wortmann
DOI: 10.1126/science.aar8658

Read the full article here.


The Ocean is losing its breath: declining oxygen in the world's ocean and coastal waters; summary for policy makers

"Oxygen is critical to the health of the ocean. It structures aquatic ecosystems, impacts the biogeochemical cycling of carbon, nitrogen and other key elements, and is a fundamental requirement for marine life from the intertidal zone to the greatest depths of the ocean." [...]

Source: UNESCO (UNESDOC)
Authors: Denise Breitburg et al.

Get the full publication here.


How ocean warmth triggers glacial melting far away

"The melting of glaciers on one side of the globe can trigger disintegration of glaciers on the other side of the globe, as has been presented in a recent paper by a team of AWI scientists, who investigated marine microalgae preserved in glacial deposits and subsequently used their findings to perform climate simulations. The study highlights a process with alerting consequences for modern ice sheets: continuous warming of the ocean can result in a massive loss of polar ice mass, and consequently to rapid sea level rise."

Source: Science Daily

Read the full article here.


Showing 1 - 10 of 17 results.
Items per Page 10
of 2