News

Exposure of European sea bass [...] to chemically dispersed oil has a chronic residual effect on hypoxia tolerance but not aerobic sc

Abstract.

"We tested the hypothesis that the chronic residual effects of an acute exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed crude oil is manifest in indices of hypoxic performance rather than aerobic performance. Sea bass were pre-screened with a hypoxia challenge test to establish their incipient lethal oxygen saturation (ILOS), but on discovering a wide breadth for individual ILOS values (2.6–11.0% O2 saturation), fish were subsequently subdivided into either hypoxia sensitive (HS) or hypoxia tolerant (HT) phenotypes, traits that were shown to be experimentally repeatable. [...]"

Source: Aquatic Toxicology
Authors: YangfanZhang et al.
DOI: 10.1016/j.aquatox.2017.07.020

Read the full article here.


What Scientists Are Learning About the Impact of an Acidifying Ocean

"The effects of ocean acidification on marine life have only become widely recognized in the past decade. Now researchers are rapidly expanding the scope of investigations into what falling pH means for ocean ecosystems."

Source: NewsDeeply: Oceans Deeply

Read the full article here.


Ecophysiological limits to aerobic metabolism in hypoxia determine epibenthic distributions and energy sequestration in the northeast Pacific ocean

Abstract.

"Expansion of oxygen deficient waters (hypoxia) in the northeast Pacific Ocean (NEP) will have marked impacts on marine life. The response of the resident communities will be a function of their ecophysiological constraints in low oxygen, although this remains untested in the NEP due to a lack of integrative studies. Here, we combine in situ surveys and lab-based respirometry experiments were conducted on three indicator species [...] of seasonally hypoxic systems in the NEP to test if metabolic constraints determine distributions and energy sequestration in a hypoxic setting.  [...]"

Source: Limonology and Oceanography
Authors: Jackson W. F. Chu, Katie S. P. Gale
DOI: 10.1002/lno.10370

Read the full article here.


Sound physiological knowledge and principles in modeling shrinking of fishes under climate change

Abstract.

"One of the main expected responses of marine fishes to ocean warming is decrease in body size, as supported by evidence from empirical data and theoretical modeling. The theoretical underpinning for fish shrinking is that the oxygen supply to large fish size cannot be met by their gills, whose surface area cannot keep up with the oxygen demand by their three-dimensional bodies. [...]"

Source: Global Change Biology
Authors: Daniel Pauly, William W. L. Cheung
DOI: 10.1111/gcb.13831

Read the full article here.


Macroalgal Blooms on the Rise along the Coast of China

Abstract.

"A broad spectrum of events that come under the category of macroalgal blooms are recognized world-wide as a response to elevated levels of eutrophication in coastal areas. In the Yellow Sea of China, green tides have consecutively occurred 10 years, which is considered as the world’s largest Ulva blooms. However, in recently years, golden tides caused by Sargassum seaweed have also been on the rapid rise, resulting in dramatic damage to the environment and economy again.  [...]"

Source: Oceanography & Fisheries
Authors: Jianheng Zhang, Yuanzi Huo and Peimin He 
DOI: 10.19080/OFOAJ.2017.04.555646

Read the full article here.


Using fuzzy logic to determine the vulnerability of marine species to climate change

Abstract.

"Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. [...]"

Source: Global Change Biology
Authors: Miranda C. Jones, William W. L. Cheung
DOI: 10.1111/gcb.13869

Read the full article here.


The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near-surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. 

Source: Journal of Geophysical Research: Oceans
Authors: R. Somavilla, C. González-Pola, J. Fernández-Diaz
DOI: 10.1002/2017JC013125

Read the full article here.


Ocean Acidification More Rapid in Coastal Oceans

"New research under the joint NCCOS Competitive Research Program and NOAA Ocean Acidification Program finds the combined effects of anthropogenic and biological carbon dioxide (CO2) inputs may lead to more rapid acidification in Chesapeake Bay and other coastal water compared to the open ocean. The results indicate that eutrophication can exacerbate ocean acidification (OA) where animal and plant respiration contributes a far greater acidification in the coastal oceans relative to the open ocean. [...]"

Source: The National Centers for Ciastal Ocean Science

Read the full article here.


A molybdenum-isotope perspective on Phanerozoic deoxygenation events

Abstract.

"The expansion and contraction of sulfidic depositional conditions in the oceans can be tracked with the isotopic composition of molybdenum in marine sediments. However, molybdenum-isotope data are often subject to multiple conflicting interpretations. Here I present a compilation of molybdenum-isotope data from three time intervals: the Toarcian Oceanic Anoxic Event about 183 million years ago, Oceanic Anoxic Event 2 about 94 million years ago, and two early Eocene hyperthermal events from 56 to 54 million years ago. [...]"

Source: Nature Geoscience
Authors: Alexander J. Dickson
DOI: 10.1038/ngeo3028

Read the full article here.


Biodiversity response to natural gradients of multiple stressors on continental margins

Abstract.

"Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important.  [...]"

Source: Proceedings of the Royal Society B
Authors: Erik A. Sperling, Christina A. Frieder, Lisa A. Levin
DOI: 10.1098/rspb.2016.0637

Read the full article here.


Showing 11 - 20 of 166 results.
Items per Page 10
of 17