News

Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment

"Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere and hydrosphere constitute the Earth's biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. [...]"

Source: Frontiers in Microbiology
Authors: Hongyue Dang and Chen-Tung A. Chen
DOI: 10.3389/fmicb.2017.01246

Full article


Eutrophication-Driven Deoxygenation in the Coastal Ocean

Abstract.

"Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world’s coastal ocean. Climate changes and extreme weather events may modify hypoxia. Organismal and fisheries effects are at the heart of the coastal hypoxia issue, but more subtle regime shifts and trophic interactions are also cause for concern. The chemical milieu associated with declining dissolved oxygen concentrations affects the biogeochemical cycling of oxygen, carbon, nitrogen, phosphorus, silica, trace metals, and sulfide as observed in water column processes, shifts in sediment biogeochemistry, and increases in carbon, nitrogen, and sulfur, as well as shifts in their stable isotopes, in recently accumulated sediments."

Source: Oceanography Volume 27 (2014)
Authors: Nancy N. Rabalais et al.
DOI: 10.5670/oceanog.2014.21

Full article