News

Blog

Coastal hypoxia and sediment biogeochemistry

Abstract.

"The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. [...]"

Source: Biogeosciences (2009)
Authors: J. J. Middelburg and L. A. Levin
DOI: 10.5194/bg-6-1273-2009

Full article


Ecological Energetic Perspectives on Responses of Nitrogen-Transforming Chemolithoautotrophic Microbiota to Changes in the Marine Environment

"Transformation and mobilization of bioessential elements in the biosphere, lithosphere, atmosphere and hydrosphere constitute the Earth's biogeochemical cycles, which are driven mainly by microorganisms through their energy and material metabolic processes. Without microbial energy harvesting from sources of light and inorganic chemical bonds for autotrophic fixation of inorganic carbon, there would not be sustainable ecosystems in the vast ocean. Although ecological energetics (eco-energetics) has been emphasized as a core aspect of ecosystem analyses and microorganisms largely control the flow of matter and energy in marine ecosystems, marine microbial communities are rarely studied from the eco-energetic perspective. [...]"

Source: Frontiers in Microbiology
Authors: Hongyue Dang and Chen-Tung A. Chen
DOI: 10.3389/fmicb.2017.01246

Full article


NOAA, USGS and partners predict third largest Gulf of Mexico summer ‘dead zone’ ever

"Larger-than-average low and no oxygen area may affect the region’s shrimp fisheries

 

Federal scientists forecast that this summer’s Gulf of Mexico dead zone – an area of low to no oxygen that can kill fish and other marine life – will be approximately 8,185 square miles, or about the size of New Jersey.

This would be the third largest dead zone recorded since monitoring began 32 years ago – the average Gulf dead zone since then has been 5,309 square miles.

The Gulf’s hypoxic or low-oxygen zones are caused by excess nutrient pollution, primarily from human activities such as agriculture and wastewater treatment. The excess nutrients stimulate an overgrowth of algae, which then sinks and decomposes in the water. The resulting low oxygen levels are insufficient to support most marine life and habitats in near-bottom waters, threatening the Gulf’s fisheries. [...]"

Source: National Oceanic and Atmospheric Administration (NOAA)

Full article

 

 


Community composition of nitrous oxide consuming bacteria in the oxygen minimum zone of the Eastern Tropical South Pacific

Abstract.

"The ozone-depleting and greenhouse gas, nitrous oxide (N2O), is mainly consumed by the microbially mediated anaerobic process, denitrification. N2O consumption is the last step in canonical denitrification, and is also the least O2 tolerant step. Community composition of total and active N2O consuming bacteria was analyzed based on total (DNA) and transcriptionally active (RNA) nitrous oxide reductase (nosZ) genes using a functional gene microarray. The total and active nosZ communities were dominated by a limited number of nosZ archetypes, affiliated with bacteria from marine, soil and marsh environments. [...]"

Source: Frontiers in Microbiology
Authors: Xin Sun, Amal Jayakumar and Bess B. Ward
DOI: 10.3389/fmicb.2017.01183

Full article


Sensitivity of Future Ocean Acidification to Carbon Climate Feedbacks

Abstract.

"Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al., 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future trajectory for ocean acidification. Here, we use the CO2 emissions scenarios from 4 Representative Concentration Pathways (RCPs) with an Earth System Model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. [...]"

Source: Biogeosciences (under review)
Authors: Richard J. Matear and Andrew Lenton
DOI: 10.5194/bg-2017-225

Full article


Environmental Research in Macquarie Harbour (Progress Report)

"This report provides an update on the status of dissolved oxygen and benthic conditions in Macquarie Harbour. It follows on from the results reported in the IMAS report released in January 2017 which described the deterioration of benthic and water column conditions in Macquarie Harbour in spring 2016. This report presents the results and preliminary interpretation of oxygen monitoring data up until the end of March 2017, and a repeat survey of benthic communities in January/February 2017. [...]"

Source: The Institute for Marine and Antarctic Studies
Authors: Jeff Ross and Catriona Macleod

Full report (PDF)


Eutrophication-Driven Deoxygenation in the Coastal Ocean

Abstract.

"Human activities, especially increased nutrient loads that set in motion a cascading chain of events related to eutrophication, accelerate development of hypoxia (lower oxygen concentration) in many areas of the world’s coastal ocean. Climate changes and extreme weather events may modify hypoxia. Organismal and fisheries effects are at the heart of the coastal hypoxia issue, but more subtle regime shifts and trophic interactions are also cause for concern. The chemical milieu associated with declining dissolved oxygen concentrations affects the biogeochemical cycling of oxygen, carbon, nitrogen, phosphorus, silica, trace metals, and sulfide as observed in water column processes, shifts in sediment biogeochemistry, and increases in carbon, nitrogen, and sulfur, as well as shifts in their stable isotopes, in recently accumulated sediments."

Source: Oceanography Volume 27 (2014)
Authors: Nancy N. Rabalais et al.
DOI: 10.5670/oceanog.2014.21

Full article


Nutrients that limit growth in the ocean

Abstract.

"Phytoplankton form the basis of the marine food web and are responsible for approximately half of global carbon dioxide (CO2) fixation (∼ 50 Pg of carbon per year). Thus, these microscopic, photosynthetic organisms are vital in controlling the atmospheric CO2 concentration and Earth’s climate. Phytoplankton are dependent on sunlight and their CO2-fixation activity is therefore restricted to the upper, sunlit surface ocean (that is, the euphotic zone). CO2 usually does not limit phytoplankton growth due to its high concentration in seawater. [...]"

Source: Current Biology
Authors: Laura A. Bristow
DOI: 10.1016/j.cub.2017.03.030

Full article


Less oxygen in a warmer ocean

"Climate warming should decrease the concentration of dissolved oxygen (O2) in the surface ocean, for a variety of reasons. This trend, predicted on theoretical grounds and by ocean models, has been difficult to detect within the much greater range of natural variability, though. Ito et al. analyzed existing measurements of O2 in the ocean collected from 1958 to 2015, and they report that a widespread negative O2 trend has begun to emerge. Further work will be needed to understand which mechanisms are responsible for the global and regional trends, however.

Geophys. Res. Lett. 10.1002/2017GL073613 (2017)."

Source: Science
Author: H. Jesse Smith
DOI: 10.1126/science.356.6341.919-g

Link to article


Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)

Abstract.

"Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). [...]"

Source: PLoS ONE
Authors: Carolina Doya et al.
DOI: 10.1371/journal.pone.0176917

Full article


Showing 1 - 10 of 67 results.
Items per Page 10
of 7