News

Sensitivity of Future Ocean Acidification to Carbon Climate Feedbacks

Abstract.

"Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al., 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future trajectory for ocean acidification. Here, we use the CO2 emissions scenarios from 4 Representative Concentration Pathways (RCPs) with an Earth System Model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. [...]"

Source: Biogeosciences (under review)
Authors: Richard J. Matear and Andrew Lenton
DOI: 10.5194/bg-2017-225

Full article


Persistent spatial structuring of coastal ocean acidification in the California Current System

Abstract.

"The near-term progression of ocean acidification (OA) is projected to bring about sharp changes in the chemistry of coastal upwelling ecosystems. The distribution of OA exposure across these early-impact systems, however, is highly uncertain and limits our understanding of whether and how spatial management actions can be deployed to ameliorate future impacts. Through a novel coastal OA observing network, we have uncovered a remarkably persistent spatial mosaic in the penetration of acidified waters into ecologically-important nearshore habitats across 1,000 km of the California Current Large Marine Ecosystem.  [...]"

Source: Scientific Reports
Authors: F. Chan et al.
DOI: 10.1038/s41598-017-02777-y

Full article


Reef-building corals thrive within hot-acidified and deoxygenated waters

Abstract.

"Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. In vitro experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24–35% across lagoon sites). [...]"

Source: Scientific Reports
Authors: Emma F. Camp
DOI: 10.1038/s41598-017-02383-y

Full article