News

Future change of summer hypoxia in coastal California Current

Abstract.

"The occurrences of summer hypoxia in coastal California Current can significantly affect the benthic and pelagic habitat and lead to complex ecosystem changes. Model-simulated hypoxia in this region is strongly spatially heterogeneous, and its future changes show uncertainties depending on the model used. Here, we used an ensemble of the new generation Earth system models to examine the present-day and future changes of summer hypoxia in this region. We applied model-specific thresholds combined with empirical bias adjustments of the dissolved oxygen variance to identify hypoxia. [...]".

 

Source: Frontiers in Marine Science 
Authors: Hui Shi et al.
DOI: https://doi.org/10.3389/fmars.2023.1205536

Read the full article here.


Editorial: Oxygen decline in coastal waters: its cause, present situation and future projection

Abstract.

"The decline of oxygen levels in coastal waters has emerged as a significant and pressing concern, carrying extensive ecological and environmental ramifications. Coastal areas, the interface between land and sea, represent intricate and dynamic ecosystems that hold paramount importance for global biodiversity and sustain a multitude of human activities. Nevertheless, these coastal regions are confronted with mounting stressors originating from both human-induced factors such as nutrient pollution [...]".

 

Source: Frontiers in Marine Science
Authors: Weiwei Fu & Tsuneo Ono
DOI: https://doi.org/10.3389/fmars.2023.1316092

Read the full article here.


Impacts and uncertainties of climate-induced changes in watershed inputs on estuarine hypoxia

Abstract.

"Multiple climate-driven stressors, including warming and increased nutrient delivery, are exacerbating hypoxia in coastal marine environments. Within coastal watersheds, environmental managers are particularly interested in climate impacts on terrestrial processes, which may undermine the efficacy of management actions designed to reduce eutrophication and consequent low-oxygen conditions in receiving coastal waters. However, substantial uncertainty accompanies the application of Earth system model (ESM) projections to a regional modeling framework when quantifying future changes to estuarine hypoxia due to climate change. [...]".

 

Source: Biogeosciences
Authors: Kyle E. Hinson et al.
DOI: https://doi.org/10.5194/bg-20-1937-2023

Read the full article here.


Persistent eutrophication and hypoxia in the coastal ocean

Abstract. 

"Coastal eutrophication and hypoxia remain a persistent environmental crisis despite the great efforts to reduce nutrient loading and mitigate associated environmental damages. Symptoms of this crisis have appeared to spread rapidly, reaching developing countries in Asia with emergences in Southern America and Africa. The pace of changes and the underlying drivers remain not so clear. To address the gap, we review the up-to-date status and mechanisms of eutrophication and hypoxia in global coastal oceans, upon which we examine the trajectories of changes over the 40 years or longer in six model coastal systems [...]".

 

Source: Cambridge University Press
Authors: Minhan Dai et al. 
DOI: https://doi.org/10.1017/cft.2023.7

Read the full article here.


A study of hypoxia and ocean acidification related physico-chemical parameters in selected coastal waters around Mauritius

Abstract. 

"Sea water samples were collected at five stations around Mauritius namely Flic-en-Flac, Albion, Mont Choisy, Trou-d’Eau-Douce and La Cambuse over 12 months from July 2021 to June 2022 for the analysis of dissolved oxygen (D.O), pH and Total alkalinity (). Albion was the only open water system whereas the others were lagoons. Summer was from November 2021 to April 2022 while the period from July 2021 to October 2021, May 2022 and June 2022 were considered to be winter. The summer mean values of sea surface temperature (SST) [...]".

 

Source: Science Direct
Authors: Yadhav Abhilesh Imrit et al.
DOI: https://doi.org/10.1016/j.rsma.2023.102815

Read the full article here.


Sedimentary molybdenum and uranium: Improving proxies for deoxygenation in coastal depositional environments

Abstract. 

"Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is unknown: (1) to what extent Mo and U enrichment factors (Mo- and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary [...]". 

 

Source: Science Direct 
Authors: K. Mareike Paul et al.
DOI: https://doi.org/10.1016/j.chemgeo.2022.121203

Read the full article here.


Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord

Abstract. 

"Ocean deoxygenation could potentially trigger substantial changes in the composition and reactivity of dissolved organic matter (DOM) pool, which plays an important role in the global carbon cycle. To evaluate links between DOM dynamics and oxygen availability, we investigated the DOM composition under varying levels of oxygen in a seasonally hypoxic fjord through a monthly time-series over two years. We used ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterize DOM on a molecular level. [...]".

 

Source: Science Direct 
Authors: Xiao Chen et al.
DOI: https://doi.org/10.1016/j.watres.2022.118690

Read the full article here.


Coastlines at Risk of Hypoxia From Natural Variability in the Northern Indian Ocean

Abstract. 

"Coastal hypoxia—harmfully low levels of oxygen—is a mounting problem that jeopardizes coastal ecosystems and economies. The northern Indian Ocean is particularly susceptible due to human-induced impacts, vast naturally occurring oxygen minimum zones, and strong variability associated with the seasonal monsoons and interannual Indian Ocean Dipole (IOD). We assess how natural factors influence the risk of coastal hypoxia by combining a large set of oxygen measurements with satellite observations to examine how the IOD amplifies or suppresses seasonal hypoxia tied to the Asian Monsoon. We show that on both seasonal and interannual timescales hypoxia is controlled by wind- and coastal Kelvin wave-driven upwelling of oxygen-poor waters onto the continental shelf and reinforcing biological feedbacks (increased subsurface oxygen demand). [...]".

 

Source: Global Biogeochemical Cycles
Authors: Jenna Pearson et al.
DOI: https://doi.org/10.1029/2021GB007192

Read the full article here.


System controls of coastal and open ocean oxygen depletion

Abstract.

"The epoch of the Anthropocene, a period during which human activity has been the dominant influence on climate and the environment, has witnessed a decline in oxygen concentrations and an expansion of oxygen-depleted environments in both coastal and open ocean systems since the middle of the 20th century. This paper provides a review of system-specific drivers of low oxygen in a range of case studies representing marine systems in the open ocean, on continental shelves, in enclosed seas[...]".

 

Source: Science Direct
Authors: Grant C. Pitcher
DOI: https://doi.org/10.1016/j.pocean.2021.102613

Read the full article here.


Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean

Abstract.

"In coastal regions, rivers and streams may be important sources of nutrients limiting to primary production in marine waters; however, sampling is still rarely conducted across the land-to-ocean aquatic continuum, precluding conclusions from being drawn about connectivity between freshwater and marine systems. Here we use a more-than-4-year dataset (2014–2018) of nutrients (nitrogen, phosphorus, silica, iron) and dissolved organic carbon spanning streams draining coastal watersheds and nearshore marine surface waters along the Central Coast of British Columbia, Canada, at the heart of the North Pacific coastal temperate[...]"

 

Source: Biogeosciences
Authors: Kyra A. St. Pierre et al.
DOI: https://doi.org/10.5194/bg-18-3029-2021

Read the full article here.


Showing 1 - 10 of 31 results.
Items per Page 10
of 4

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here