News

Evolution and dynamics of the Arabian Sea oxygen minimum zone: Understanding the paradoxes

Abstract.

"The Arabian Sea hosts a perennial and intense oxygen minimum zone (OMZ) at 150–1200 m depths with O2 concentrations <0.5 ml/l. It is generally believed that the oxygen-depleted conditions at mid-water depths result from high rate of O2 consumption due to monsoon-driven productivity generating a high organic matter flux, combined with slow renewal of thermocline waters in the region. With global warming and increasing hypoxia, there is growing interest to better understand the various factors controlling oxygen conditions in the thermocline waters and the impact on the nutrient cycling and climate. [...]".

 

Source: Science Direct 
Authors: Arun Deo Singh et al.
DOI: https://doi.org/10.1016/j.eve.2023.100028

Read the full article here.


Partitioning of the denitrification pathway and other nitrite metabolisms within global oxygen deficient zones

Abstract.

"Oxygen deficient zones (ODZs) account for about 30% of total oceanic fixed nitrogen loss via processes including denitrification, a microbially mediated pathway proceeding stepwise from NO3– to N2. This process may be performed entirely by complete denitrifiers capable of all four enzymatic steps, but many organisms possess only partial denitrification pathways, either producing or consuming key intermediates such as the greenhouse gas N2O. Metagenomics and marker gene surveys have revealed a diversity of denitrification genes within ODZs, but whether these genes co-occur within [...]".

 

Source: Nature
Authors: Irene H. Zhang et al.
DOI: https://doi.org/10.1038/s43705-023-00284-y

Read the full article here.


Microscale dynamics promote segregated denitrification in diatom aggregates sinking slowly in bulk oxygenated seawater

Abstract.

"Sinking marine particles drive the biological pump that naturally sequesters carbon from the atmosphere. Despite their small size, the compartmentalized nature of particles promotes intense localized metabolic activity by their bacterial colonizers. Yet the mechanisms promoting the onset of denitrification, a metabolism that arises once oxygen is limiting, remain to be established. Here we show experimentally that slow sinking aggregates composed of marine diatoms—important primary producers for global carbon export—support active denitrification even among bulk oxygenated water typically thought to exclude anaerobic metabolisms. [...]".

 

Source: Nature
Authors: Davide Ciccarese et al.
DOI: https://doi.org/10.1038/s43247-023-00935-x

Read the full article here.


Nitrogen isotope evidence for oxygenated upper ocean during the Cryogenian interglacial period

Abstract.

"The Cryogenian interglacial period have witnessed dramatic changes in climate, oceanic environment and biological evolution. The nitrogen isotopic composition, as an important biogeochemical proxy, has the potential to track both the nutrient cycling and redox conditions in the past. However, nitrogen isotopic data during this interglacial time is rather limited. Here, we present integrated data for nitrogen isotopes (δ15N), as well as organic carbon isotopes (δ13Corg), iron (Fe) speciation, pyrite morphology and trace elements from the Cryogenian interglacial Datangpo Formation derived from a drill core from South China to figure out the nitrogen cycling and coeval redox states. [...]". 

 

Source: Science Direct 
Authors: Guangyou Zhu et al.
DOI: https://doi.org/10.1016/j.chemgeo.2022.120929

Read the full article here.


Spatio-temporal variations in culturable bacterial community associated with denitrification in the Arabian Sea oxygen minimum zone

Abstract. 

"The Arabian Sea (AS) oxygen minimum zone (OMZ) is a site of intense denitrification, contributing to 20% of the global oceanic denitrification, playing a significant role in the nitrogen cycle. In this study, the structure and diversity of culturable bacterial communities inhabiting the water column of the AS OMZ were investigated through phylogenetic analysis and nitrate-utilizing ability was studied through culture-based studies. A total of 248 isolates collected during pre-monsoon and post-monsoon season were analysed for 16S rRNA gene sequences. [...]".

 

Source: Marine Biology Research
Authors: Ujwala Amberkar et al. 
DOI: 10.1080/17451000.2022.2086700

Read the full article here.


Geochemistry of sediments in contact with oxygen minimum zone of the eastern Arabian Sea: Proxy for palaeo-studies

Abstract. 

"The Arabian Sea encompasses oxygen minimum zone with denitrifying conditions. For the present study, sediments were collected across three transects off Goa transect (GT), Mangalore transect (MT) and Kochi transect (KT) in contact with water column dissolved oxygen (DO) range of 1.4–118.0 µM. Sediments were investigated for texture, clay mineralogy, total organic carbon (Corg), total nitrogen, CaCO3, δ15N, δ13C, metal content to infer their distribution with changing DO and their use as possible palaeo-proxies. The Corg (0.9–8.6%) is largely marine and δ15N from GT and MT preserves signatures of higher water column denitrification. [...]". 

 

Source: Journal of Earth System Science 

Authors: Pratima M. Kessarkar et al. 

DOI: https://doi.org/10.1007/s12040-022-01823-2 

Read the full article here.


Evidence of hypoxia in the eastern coast of the Gulf of California as induced by stable nitrogen isotopes in surface sediments

Abstract. 

"The Gulf of California is a highly biodiverse marine basin located in the northeast Mexican Pacific Ocean. In the past three decades, this basin has experienced increased hypoxia in shallow waters, which threatens its coastal ecosystems. The aim of this study is to analyze δ15N and δ13C isotopes of organic matter in coastal sediments to characterize sources of primary production and shifts in biogeochemical processes that reflect increasing oxygen deficiency in the shallow coast of the eastern Gulf of California. Surface sediments samples were collected from 8 to 47 m deep along the coastal margin of Sinaloa and Sonora. This region is characterized by the development of anthropogenic activities, which could be the main source of organic matter evidenced in the marine environment. [...]". 

 

Source: Science Direct

Authors: Alberto Sánchez et al. 

DOI: https://doi.org/10.1016/j.csr.2022.104716

Read the full article here.


Observed denitrification in the northeast Arabian Sea during the winter-spring transition of 2009

Abstract. 

"The central and northeast Arabian Sea (AS) has an intense and thick oxygen minimum zone (OMZ) and denitrification zone. It is comparable with the strongest OMZ of the north-equatorial Pacific Ocean. Denitrification in the AS is revisited using a set of cruise observations collected during February–March of 2009 by the Centre for Marine Living Resources, India. The region possesses one of the most robust N* depleted water reaching as low as -20 μmol l−1 at depths (~600 m). In AS, the oxygen depletion is mainly due to sluggish circulation, weak lateral and vertical ventilation. The biological respiration in oxygen deficit condition depletes nitrate and further modifies the Redfield ratio at intermediate depths (200-600 m) from 16N:1P to 8N:1P. [...]".

 

Source: Science Direct

Authors: Anju Mallissery et al.

DOI: https://doi.org/10.1016/j.jmarsys.2021.103680

Read the full article here.


Denitrification Aligns with N2 Fixation in Red Sea Corals

Abstract.

"Denitrification may potentially alleviate excess nitrogen (N) availability in coral holobionts to maintain a favourable N to phosphorous ratio in the coral tissue. However, little is known about the abundance and activity of denitrifiers in the coral holobiont. The present study used the nirS marker gene as a proxy for denitrification potential along with measurements of denitrification rates in a comparative coral taxonomic framework from the Red Sea: Acropora hemprichiiMillepora dichotoma, and Pleuractis granulosa. [...]"

Source: Scientific Reports
Authors: Arjen Tilstra et al.
DOI: 10.1038/s41598-019-55408-z

Read the full article here.


Latitudinal variations in δ30Si and δ15N signatures along the Peruvian shelf: quantifying the effects of nutrient utilization versus denitrification..

..over the past 600 years

Abstract.

"The stable sedimentary nitrogen isotope compositions of bulk organic matter (δ15Nbulk) and the silicon isotope composition of diatoms (δ30SiBSi) both mainly reflect the degree of past nutrient utilization by primary producers. However, in ocean areas where anoxic and suboxic conditions prevail, the δ15Nbulk signal ultimately recorded within the sediments is also influenced by water column denitrification, causing an increase in the subsurface δ15N signature of dissolved nitrate (δ15NO3) upwelled to the surface. [...]"

Source: Biogeosciences
Authors: Kristin Doering et al.
DOI: 10.5194/bg-16-2163-2019

Read the full article here.


Showing 1 - 10 of 43 results.
Items per Page 10
of 5

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here