News

New Study in Oxygen-Deprived Black Sea Provides Insights on Future Carbon Budget

"Scientists are studying the oxygen-deprived waters of the Black Sea to help answer questions about the deepest parts of the ocean and Earth’s climate.

 

A new study led by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science found that even in the absence of oxygen, the chemical and biological processes occurring in the Black Sea resemble those in the oxygenated deep ocean. [...]"

Source: University of Miami Rosenstiel School of Marine & Atmospheric Science

Read the full article here.


Species distribution modeling of deep sea sponges in the North Pacific Ocean.

Abstract.

"Knowledge of deep-sea species and their ecosystems is limited due to the inaccessibility of the areas and the prohibitive cost of conducting large-scale field studies. My graduate research has used predictive modeling methods to map hexactinellid sponge habitat extent in the North Pacific, as well as climate-induced changes in oceanic dissolved oxygen levels and how this will impact sponges. [...]"

Source: PeerJ (NOT PEER-REVIEWED)
Authors: Fiona Davidson
DOI: 10.7287/peerj.preprints.26815v1

Read the full article here.


Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)

Abstract.

"Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ). [...]"

Source: PLoS ONE
Authors: Carolina Doya et al.
DOI: 10.1371/journal.pone.0176917

Full article


Deep sea life faces dark future due to warming and food shortage

New study reveals negative impact of climate change, human activity, acidification and deoxygenation on ocean and its creatures

LINK


Major impacts of climate change on deep-sea benthic ecosystems

Abstract.

"The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. [...]" 

LINK