News

The Ocean is losing its breath: declining oxygen in the world's ocean and coastal waters; summary for policy makers

"Oxygen is critical to the health of the ocean. It structures aquatic ecosystems, impacts the biogeochemical cycling of carbon, nitrogen and other key elements, and is a fundamental requirement for marine life from the intertidal zone to the greatest depths of the ocean." [...]

Source: UNESCO (UNESDOC)
Authors: Denise Breitburg et al.

Get the full publication here.


North Pacific freshwater events linked to changes in glacial ocean circulation

Abstract.

"There is compelling evidence that episodic deposition of large volumes of freshwater into the oceans strongly influenced global ocean circulation and climate variability during glacial periods. In the North Atlantic region, episodes of massive freshwater discharge to the North Atlantic Ocean were related to distinct cold periods known as Heinrich Stadials. [...]"

Source: Nature
Authors: E. Maier et al.
DOI: 10.1038/s41586-018-0276-y

Read the full article here.


Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria

Abstract.

"Anaerobic ammonium oxidation (anammox) contributes substantially to ocean nitrogen loss, particularly in anoxic marine zones (AMZs). Ammonium is scarce in AMZs, raising the hypothesis that organic nitrogen compounds may be ammonium sources for anammox. Biochemical measurements suggest that the organic compounds urea and cyanate can support anammox in AMZs. [...]"

Source: The ISME Journal
Authors: Sangita Ganesh et al.
DOI: 10.1038/s41396-018-0223-9

Read the full article here.


Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

Abstract.

"The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. [...]"

Source: Nature Communications
Authors: Sebastiaan van de Velde et al.
DOI: 10.1038/s41467-018-04973-4

Read the full article here.


Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition

Abstract.

"The late Ediacaran to early Cambrian interval witnessed extraordinary radiations of metazoan life. The role of the physical environment in this biological revolution, such as changes to oxygen levels and nutrient availability, has been the focus of longstanding debate. Seemingly contradictory data from geochemical redox proxies help to fuel this controversy. As an essential nutrient, nitrogen can help to resolve this impasse by establishing linkages between nutrient supply, ocean redox, and biological changes. [...]"

Source: Nature Communications
Authors: Dan Wang et al.
DOI: 10.1038/s41467-018-04980-5

Read the full article here.


Oxygen minimum zones in the early Cambrian ocean

Abstract.

"The relationship between the evolution of early animal communities and oceanic oxygen levels remains unclear. In particular, uncertainty persists in reconstructions of redox conditions during the pivotal early Cambrian (541-510 million years ago, Ma), where conflicting datasets from deeper marine settings suggest either ocean anoxia or fully oxygenated conditions. By coupling geochemical palaeoredox proxies with a record of organic-walled fossils from exceptionally well-defined successions of the early Cambrian Baltic Basin, we provide evidence for the early establishment of modern-type oxygen minimum zones (OMZs). [...]"

Source: Geochemical Perspectives Letters 
Authors: R. Guilbaud et al.
DOI: 10.7185/geochemlet.1806

Read the full article here.


Ecology and evolution of seafloor and subseafloor microbial communities

Abstract.

"Vast regions of the dark ocean have ultra-slow rates of organic matter sedimentation, and their sediments are oxygenated to great depths yet have low levels of organic matter and cells. Primary production in the oxic seabed is supported by ammonia-oxidizing archaea, whereas in anoxic sediments, novel, uncultivated groups have the potential to produce H2 and CH4, which fuel anaerobic carbon fixation. [...]"

Source: Nature Reviews Microbiology
Authors: William D. Orsi
DOI: 10.1038/s41579-018-0046-8

Read the full article here.


Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

Abstract.

"The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. [...]"

Source: Nature Communications
Authors: Sebastiaan van de Velde et al.
DOI: 10.1038/s41467-018-04973-4

Read the full article here.


Annual plankton community metabolism in estuarine and coastal waters in Perth (Western Australia)

Abstract.

"The planktonic metabolic balance that is the balance between gross primary production (GPP) and community respiration (CR) was determined in Matilda Bay (estuarine) and Woodman Point (coastal) in Perth, Western Australia. The rates of net community production (NCP = GPP – CR) and the ratio between GPP and CR (P/R) were assessed to evaluate whether the metabolic balance in the two coastal locations tends to be net autotrophic (production exceeding community respiration) or net heterotrophic (respiration exceeding production).  [...]"

Source: PeerJ
Authors: Susana Agusti, Lorena Vigoya, Carlos Manuel Duarte
DOI: 10.7717/peerj.5081

Read the full article here.


Changing storminess and global capture fisheries

"Climate change-driven alterations in storminess pose a significant threat to global capture fisheries. Understanding how storms interact with fishery social-ecological systems can inform adaptive action and help to reduce the vulnerability of those dependent on fisheries for life and livelihood."

Source: Nature Climate Change
Authors: Nigel C. Sainsbury et al.
DOI: 10.1038/s41558-018-0206-x

Read the full article here.


Showing 1 - 10 of 237 results.
Items per Page 10
of 24