News

Distribution of Meiofauna in Bathyal Sediments Influenced by the Oxygen Minimum Zone Off Costa Rica

Abstract.

"Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. Mean total densities in our sampling cores (400–1800 m water depth) were highest with 3688 ind. 10 cm−2 at the OMZ core at 400 m water depth, decreasing rapidly downslope. [...]"

Source: Frontiers in Marine Science
Authors: Carlos Neira et al.
DOI: 10.3389/fmars.2018.00448

Read the full article here.


The evolving response of mesopelagic fishes to declining midwater oxygen concentrations in the southern and central California Current

Abstract.

"Declining oxygen concentrations in the deep ocean, particularly in areas with pronounced oxygen minimum zones (OMZs), are a growing global concern related to global climate change. Its potential impacts on marine life remain poorly understood. A previous study suggested that the abundance of a diverse suite of mesopelagic fishes off southern California was closely linked to trends in midwater oxygen concentration. [...]"

Source: ICES Journal of Marine Science
Authors: J Anthony Koslow et al.
DOI: 10.1093/icesjms/fsy154

Read the full article here.


Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone

Abstract.

"The availability of the micronutrient iron (Fe) in surface waters determines primary production, N2 fixation and microbial community structure in large parts of the world's ocean, and thus plays an important role in ocean carbon and nitrogen cycles. Eastern boundary upwelling systems and the connected oxygen minimum zones (OMZs) are typically associated with elevated concentrations of redox-sensitive trace metals (e.g. Fe, manganese (Mn) and cobalt (Co)), with shelf sediments typically forming a key source. Over the last five decades, an expansion and intensification of OMZs has been observed and this trend is likely to proceed. [...]"

Source: Biogeosciences
Authors: Insa Rapp et al.
DOI: 10.5194/bg-2018-472

Read the full article here.


Distribution of meiofauna in bathyal sediments influenced by the oxygen minimum zone off Costa Rica

Abstract.

"Ocean deoxygenation has become a topic of increasing concern because of its potential impacts on marine ecosystems, including oxygen minimum zone (OMZ) expansion and subsequent benthic effects. We investigated the influence of oxygen concentration and organic matter (OM) availability on metazoan meiofauna within and below an OMZ in bathyal sediments off Costa Rica, testing the hypothesis that oxygen and OM levels are reflected in meiofaunal community structures and distribution. [...]"

Source: Frontiers in Marine Science
Authors: Carlos Neira et al.
DOI: 10.3389/fmars.2018.00448

Read the full article here.


Subsurface Fine‐Scale Patterns in an Anticyclonic Eddy Off Cap‐Vert Peninsula Observed From Glider Measurements

Abstract.

"Glider measurements acquired along four transects between Cap‐Vert Peninsula and the Cape Verde archipelago in the eastern tropical North Atlantic during March–April 2014 were used to investigate fine‐scale stirring in an anticyclonic eddy. The anticyclone was formed near 12°N off the continental shelf and propagated northwest toward the Cape Verde islands. At depth, between 100 and –400 m, the isolated anticyclone core contained relatively oxygenated, low‐salinity South Atlantic Central Water, while the surrounding water masses were saltier and poorly oxygenated. [...]"

Source: Oceans
Authors: Nicolas Kolodziejczyk et al.
DOI: 10.1029/2018JC014135

Read the full article here.


[German] Dem Ozean geht die Luft aus

"In den tropischen und subtropischen Meeren existieren in mittleren Tiefen riesige sauerstoffarme Zonen. Im Zuge des Klimawandels dehnen sie sich immer stärker aus. Auch in Küstenregionen entstehen durch Stickstoffbelastung aus der Landwirtschaft lebensfeindliche Zonen ohne Sauerstoff – mit verheerenden Folgen für das marine Ökosystem [...]"

Source: Spektrum.de

Read the full article here.


Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation

Abstract.

"Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50–100 years, but with greater oxygen declines in intermediate waters (100–600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. [...]"

Source: Annual Review of Marine Science
Author: L. Levin
DOI: 10.1146/annurev-marine-121916-063359

Read the full article here.


Microbial niches in marine oxygen minimum zones

Abstract.

"In the ocean’s major oxygen minimum zones (OMZs), oxygen is effectively absent from sea water and life is dominated by microorganisms that use chemicals other than oxygen for respiration. Recent studies that combine advanced genomic and chemical detection methods are delineating the different metabolic niches that microorganisms can occupy in OMZs. Understanding these niches, the microorganisms that inhabit them, and their influence on marine biogeochemical cycles is crucial as OMZs expand with increasing seawater temperatures."

Source: Nature Reviews Microbiology
Authors: Anthony D. Bertagnolli & Frank J. Stewart
DOI: 10.1038/s41579-018-0087-z

Read the full article here.


Lipids as indicators of nitrogen cycling in present and past anoxic oceans

Summary.

"Nitrogen (N) cycling influences primary production in the ocean and, hence, the global climate. It is performed by a variety of microorganisms, including eukaryotes, bacteria and archaea in oxic, suboxic, and anoxic waters. Our knowledge of the reactions involved in marine N cycling and its associated microorganisms has greatly increased in the last decade due to the development of multiple culture-independent methods. Among them are gene and lipid biomarkers, which hold taxonomic potential and can be successfully applied in modern day and paleoenvironmental studies. However, many aspects of N cycling and their long-term implications for the marine environment and the global climate still require more study, especially in suboxic and anoxic waters, including the oxygen-deficient zones (ODZs), which are expanding in the modern oceans.

Author: Martina Sollai

Read the full article here.


Identifying oxygen minimum zone-type biogeochemical cycling in Earth history using inorganic geochemical proxies

Abstract.

"Because of anthropogenic global warming, the world ocean is currently losing oxygen. This trend called ocean deoxygenation is particularly pronounced in low-latitude upwelling-related oxygen minimum zones (OMZs). In these areas, the temperature-related oxygen drawdown is additionally modulated by biogeochemical feedback mechanisms between sedimentary iron (Fe) and phosphorus release, water column nitrogen cycling and primary productivity. Similar feedbacks were likely active during past periods of global warming and oceandeoxygenation. However, their integrated role in amplifying or mitigating climate change-driven ocean anoxia has not been evaluated in a systematic fashion. [...]"

Source: Earth-Science Reviews
Author: Florian Scholz
DOI: 10.1016/j.earscirev.2018.08.002

Read the full article here.


Showing 1 - 10 of 82 results.
Items per Page 10
of 9