News

Preprint: Reviews and syntheses: Abrupt ocean biogeochemical change under human-made climatic forcing – warming, acidification, and deoxygenation

Abstract.

"Abrupt changes in ocean biogeochemical variables occur as a result of human-induced climate forcing as well as those which are more gradual and occur over longer timescales. These abrupt changes have not yet been identified and quantified to the same extent as the more gradual ones. We review and synthesise abrupt changes in ocean biogeochemistry under human-induced climatic forcing. We specifically address the ocean carbon and oxygen cycles because the related processes of acidification and deoxygenation provide important ecosystem hazards. [...]".

 

Source: Biogeosciences
Authors: Christoph Heinze et al.
DOI: https://doi.org/10.5194/bg-2023-182

Read the full article here.


Interactive effects of ocean deoxygenation and acidification on a coastal fish Sillago japonica in early life stages

Abstract.

"Acidification and deoxygenation are major threats to ocean environments. Despite the possibilities of their co-occurrence, little is known about their interactive effects on marine organisms. The effects of low pH and low dissolved oxygen (DO) on the early life stages of the coastal fish Sillago japonica were investigated. Twenty-five experimental treatments fully crossed in five levels of pH 7.6–8.1 and DO 50–230 μmol/kg (20–100 % saturation degree) were tested, and hatching rate of the embryos and survivability of the larvae after 24 h at 25 °C were investigated. [...]".

 

Source: Science Direct 
Authors: Makiko Yorifuji et al.
DOI: https://doi.org/10.1016/j.marpolbul.2023.115896

Read the full article here.


High-frequency dynamics of pH, dissolved oxygen, and temperature in the coastal ecosystems of the Tanga-Pemba Seascape...

Full title: "High-frequency dynamics of pH, dissolved oxygen, and temperature in the coastal ecosystems of the Tanga-Pemba Seascape: implications for upwelling-enhanced ocean acidification and deoxygenation"

Abstract.

"Ocean acidification, deoxygenation, and warming are three interconnected global change challenges caused by increased anthropogenic carbon emissions. These issues present substantial threats to marine organisms, ecosystems, and the survival of coastal communities depending on these ecosystems. Coastal upwelling areas may experience significant [...]".

 

Source: Frontiers in Marine Science
Authors: Rushingisha George et al. 
DOI: https://doi.org/10.3389/fmars.2023.1286870

Read the full article here.


Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming ...

Full title: "Assessing impacts of coastal warming, acidification, and deoxygenation on Pacific oyster (Crassostrea gigas) farming: a case study in the Hinase area, Okayama Prefecture, and Shizugawa Bay, Miyagi Prefecture, Japan"

Abstract.

"Coastal warming, acidification, and deoxygenation are progressing primarily due to the increase in anthropogenic CO2. Coastal acidification has been reported to have effects that are anticipated to become more severe as acidification progresses, including inhibiting the formation of shells of calcifying organisms such as shellfish, which include Pacific oysters (Crassostrea gigas) [...]".

 

Source: Biogeosciences
Authors: Masahiko Fujii et al.
DOI: https://doi.org/10.5194/bg-20-4527-2023

Read the full article here.


Mentoring the next generation of ocean deoxygenation and acidification scientists

Intro.

"UNESCO’s Intergovernmental Oceanographic Commission (IOC/UNESCO), El Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and the Universidad Catolica del Norte, as well as many other partners and sponsors organized the GOOD-OARS-CLAP-COPAS Summer School from 6-12 November 2023 in La Serena, Chile, to teach the latest science of ocean acidification and deoxygenation."

Source: IOC-UNESCO

For further information, please read here


Combined effects of ocean deoxygenation, acidification, and phosphorus limitation on green tide macroalga, Ulva prolifera

Abstract.

"Ocean deoxygenation, acidification, and decreased phosphorus availability are predicted to increase in coastal ecosystems under future climate change. However, little is known regarding the combined effects of such environmental variables on the green tide macroalga Ulva prolifera. Here, we provide quantitative and mechanistic understanding of the acclimation mechanisms of U. prolifera to ocean deoxygenation, acidification, and phosphorus limitation under both laboratory and semi-natural (mesocosms) conditions. [...]".

 

Source: Science Direct
Authors: Xintong Huang et al.
DOI: https://doi.org/10.1016/j.scitotenv.2023.164982

Read the full article here.


Preprint: Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America ...

Full title: "Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)"

Abstract.

"Coastal and estuarine ecosystems fringing the North Pacific Ocean are particularly vulnerable to ocean acidification, hypoxia, and intense marine heatwaves as a result of interactions among natural and anthropogenic processes. Here we characterize variability during a seasonally resolved cruise time series in the southern Salish Sea (Puget Sound, Strait of Juan de Fuca) and nearby coastal waters for select physical (temperature, T; salinity, S) and biogeochemical [...]".

 

Source: Biogeosciences
Authors: Simone R. Alin et al.
DOI: https://doi.org/10.5194/bg-2023-181

Read the full article here.


Development of a high-resolution marine ecosystem model for predicting the combined impacts of ocean acidification and deoxygenation

Abstract.

"An approach was developed to help evaluate and predict the combined effects of ocean acidification and deoxygenation on calcifying organisms along the coast of Japan. The Coastal and Regional Ocean COmmunity (CROCO) modeling system was set up to couple the Regional Ocean Modeling System (ROMS) to the Pelagic Interaction Scheme for Carbon and Ecosystem Studies (PISCES) biogeochemical model and used to reproduce physical and biochemical processes in the area around Miyako Bay, Iwate Prefecture, Japan. [...]".

 

Source: Frontiers in Marine Science
Authors: Lawrence Patrick C. Bernardo et al.
DOI: https://doi.org/10.3389/fmars.2023.1174892

Read the full article here.


A study of hypoxia and ocean acidification related physico-chemical parameters in selected coastal waters around Mauritius

Abstract. 

"Sea water samples were collected at five stations around Mauritius namely Flic-en-Flac, Albion, Mont Choisy, Trou-d’Eau-Douce and La Cambuse over 12 months from July 2021 to June 2022 for the analysis of dissolved oxygen (D.O), pH and Total alkalinity (). Albion was the only open water system whereas the others were lagoons. Summer was from November 2021 to April 2022 while the period from July 2021 to October 2021, May 2022 and June 2022 were considered to be winter. The summer mean values of sea surface temperature (SST) [...]".

 

Source: Science Direct
Authors: Yadhav Abhilesh Imrit et al.
DOI: https://doi.org/10.1016/j.rsma.2023.102815

Read the full article here.


Aquatic Productivity under Multiple Stressors

Abstract. 

"Aquatic ecosystems are responsible for about 50% of global productivity. They mitigate climate change by taking up a substantial fraction of anthropogenically emitted CO2 and sink part of it into the deep ocean. Productivity is controlled by a number of environmental factors, such as water temperature, ocean acidification, nutrient availability, deoxygenation and exposure to solar UV radiation. Recent studies have revealed that these factors may interact to yield additive, synergistic or antagonistic effects. While ocean warming and deoxygenation are supposed to affect mitochondrial respiration oppositely [...]".

 

Source: MDPI
Authors: Donat-P. Häder & Kunshan Gao
DOI: https://doi.org/10.3390/w15040817

Read the full article here.


Showing 1 - 10 of 91 results.
Items per Page 10
of 10

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here