News
Indian Ocean glacial deoxygenation and respired carbon accumulation during mid-late Quaternary ice ages
Abstract.
"Reconstructions of ocean oxygenation are critical for understanding the role of respired carbon storage in regulating atmospheric CO2. Independent sediment redox proxies are essential to assess such reconstructions. Here, we present a long magnetofossil record from the eastern Indian Ocean in which we observe coeval magnetic hardening and enrichment of larger, more elongated, and less oxidized magnetofossils during glacials compared to interglacials over the last ~900 ka. Our multi-proxy records of redox-sensitive magnetofossils, trace element concentrations, and benthic foraminiferal Δδ13C consistently suggest a recurrence of lower O2 [...]".
Source: Nature
Authors: Liao Chang et al.
DOI: https://doi.org/10.1038/s41467-023-40452-1
Cretaceous southern high latitude benthic foraminiferal assemblages during OAE 2 at IODP Site U1516, Mentelle Basin, Indian Ocean
Abstract.
"At Site U1516 (Mentelle Basin, southeast Indian Ocean, offshore western Australia), the International Ocean Discovery Program (IODP) Expedition 369 recovered an almost complete pelagic record of the Upper Cretaceous, including the Oceanic Anoxic Event 2 (OAE 2). To better understand paleoenvironmental changes across OAE 2, 32 samples were analysed for benthic foraminiferal abundance data that represent one of the few benthic foraminiferal datasets spanning the OAE 2 in the southern high latitudes. [...]".
Source: Science Direct
Authors: Erik Wolfgring et al.
DOI: https://doi.org/10.1016/j.cretres.2023.105555
Ostracod response to monsoon and OMZ variability over the past 1.2 Myr
"We present the first continuous middle through late Pleistocene record of fossil ostracods from the Maldives in the northern Indian Ocean, derived from sediment cores taken at Site U1467 by Expedition 359 of the International Ocean Discovery Program (IODP). Site U1467 lies at 487 m water depth in the Inner Sea of the Maldives archipelago, an ideal place for studying the effects of the South Asian Monsoon (SAM) system on primary productivity, intermediate depth ocean circulation, and the regional oxygen minimum zone (OMZ). [...]".
Source: Science Direct
Authors: Carlos A. Alvarez Zarikian et al.
DOI: https://doi.org/10.1016/j.marmicro.2022.102105
Coastlines at Risk of Hypoxia From Natural Variability in the Northern Indian Ocean
"Coastal hypoxia—harmfully low levels of oxygen—is a mounting problem that jeopardizes coastal ecosystems and economies. The northern Indian Ocean is particularly susceptible due to human-induced impacts, vast naturally occurring oxygen minimum zones, and strong variability associated with the seasonal monsoons and interannual Indian Ocean Dipole (IOD). We assess how natural factors influence the risk of coastal hypoxia by combining a large set of oxygen measurements with satellite observations to examine how the IOD amplifies or suppresses seasonal hypoxia tied to the Asian Monsoon. We show that on both seasonal and interannual timescales hypoxia is controlled by wind- and coastal Kelvin wave-driven upwelling of oxygen-poor waters onto the continental shelf and reinforcing biological feedbacks (increased subsurface oxygen demand). [...]".
Source: Global Biogeochemical Cycles
Authors: Jenna Pearson et al.
DOI: https://doi.org/10.1029/2021GB007192
Impacts of Ocean Currents on the South Indian Ocean Extratropical Storm Track through the Relative Wind Effect
Abstract.
"This study examines the role of the relative wind (RW) effect (wind relative to ocean current) in the regional ocean circulation and extratropical storm track in the south Indian Ocean. Comparison of two high-resolution regional coupled model simulations with and without the RW effect reveals that the most conspicuous ocean circulation response is the significant weakening of the overly energetic anticyclonic standing eddy off Port Elizabeth, South Africa, a biased feature ascribed to upstream retroflection of the Agulhas Current (AC).[...]"
Source: AMS- American Meteorological Sciety
Authors: Hyodae Seo et al.
DOI: https://doi.org/10.1175/JCLI-D-21-0142.1
Observed Seasonal and Interannual Controls on Coastal Oxygen and Dead Zones in the Indian Ocean
Abstract.
"A major concern is that global de-oxygenation will expand Oxygen minimum zones (OMZs) and favor coastal dead zones (DZs) where already low oxygen levels threaten ecosystems and adjacent coastal economies. The northern Indian ocean is home to both intense OMZs and DZs, and is surrounded by many kilometers of biodiverse and commercially valuable coastline. Exchanges between OMZs and shelf waters that contribute to coastal DZs are subject to the strong monsoonal seasonal cycle[...]"
Source: EGU General Assambly
Authors: Jenna Pearson et al.
DOI: https://doi.org/10.5194/egusphere-egu21-1421
A global viral oceanography database (gVOD)
Abstract.
"Virioplankton are a key component of the marine biosphere in maintaining diversity of microorganisms and stabilizing ecosystems. They also contribute greatly to nutrient cycles/cycling by releasing organic matter after lysis of hosts. In this study, we constructed the first global viral oceanography database (gVOD) by collecting 10 931 viral abundance (VA) data and 727 viral production (VP) data, along with host and relevant oceanographic parameters when available. Most VA data were obtained in the North Atlantic (32 %) and North Pacific (29 %) oceans, while the southeast Pacific[...]"
Source: Earth System Science Data
Authors: Le Xie et al.
DOI: https://doi.org/10.5194/essd-13-1251-2021
Pelagic microplastics in surface water of the Eastern Indian Ocean during monsoon transition period: Abundance, distribution, and characteristics
Abstract.
"Microplastics (MPs) have been documented in almost all marine environments, including coastal regions, the open ocean, and the deep sea. However, relatively little knowledge was available about MP pollution in the open ocean, especially the Indian Ocean. We conducted field observations at 36 stations in the Eastern Indian Ocean (EIO), using a typical manta trawl with a mesh size of 330 μm for surface water sampling. Ours is the first study to obtained comprehensive and comparable baseline data about MPs in the EIO, including abundance, spatial distribution and characteristics[...]"
Source: Science Direct
Authors: Changjun Li et al.
DOI: https://doi.org/10.1016/j.scitotenv.2020.142629
Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean
Abstract.
"Decreasing concentrations of dissolved oxygen in the ocean are fuconsidered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations < ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of < ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic[...]"
Source: Biogeosciences
Authors: Tim Rixen et al.
DOI: https://doi.org/10.5194/bg-17-6051-2020
Distribution of iron in the Western Indian Ocean and the Eastern tropical South pacific: An inter-basin comparison
Abstract.
"The Western Indian Ocean (WIO) and Eastern Tropical South Pacific (ETSP) are distinctly different regimes, yet they share several important features. These include a strong upwelling system, a large oxygen minimum zone (OMZ) with active denitrification, a spreading center with extensive hydrothermal activity, and a vast oligotrophic upper water column. Here, we show that the distribution and geochemistry of iron shows remarkable similarities as well. [...]"
Source: Chemical Geology
Authors: James W. Moffett and Christopher R. German
DOI: 10.1016/j.chemgeo.2019.119334
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.