News

Redox geochemical signatures in Mediterranean sapropels: Implications to constrain deoxygenation dynamics in deep-marine settings

Abstract.

"Global warming and anthropogenic activity are boosting marine deoxygenation in many regions around the globe. Deoxygenation is a critical ocean stressor with profound implications for marine ecosystems and biogeochemical cycles. Understanding the dynamics and evolution of past deoxygenation events can enhance our knowledge of present-day and future impacts of climate change and anthropogenic pressure on marine environments. Many studies have reconstructed the evolution redox conditions of past deoxygenation events using geochemical proxies. [...]".

 

Source: Science Direct
Authors: Ricardo D. Monedero-Contreras et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111953

Read the full article here.


Sensitivity of the thermohaline circulation during the Messinian: Toward constraining the dynamics of Mediterranean deoxygenation

Abstract.

"During the Messinian, the sensitivity of the Mediterranean Basin to ecosystem perturbation was enhanced in response to the progressive restriction of water exchange with the Atlantic Ocean. The widespread deposition of organic-rich layers (i.e. sapropel) during the Messinian testifies the perturbation of the carbon and oxygen cycles; indeed, these sediments were deposited under conditions of oxygen starvation, presumably in response to a periodic deterioration of the thermohaline circulation strength. [...]".

 

Source: Science Direct 
Authors: Alan Maria Mancini et al.
DOI: https://doi.org/10.1016/j.dsr.2023.104217

Read the full article here.


Role of climate variability on deep-water dynamics and deoxygenation during sapropel deposition ...

Full title: "Role of climate variability on deep-water dynamics and deoxygenation during sapropel deposition: New insights from a palaeoceanographic empirical approach"

Abstract.

"Modern marine settings are experiencing rapid deoxygenation mainly forced by global warming and anthropogenic eutrophication. Therefore, studies that assess the role of climate variability in large spatiotemporal deoxygenations during past climate changes are needed to better comprehend the consequences of the current global warming and ocean deoxygenation. [...]".

 

Source: Science Direct
Authors: Ricardo D. Monedero-Contreras et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111601

Read the full article here.


Trends and variability of ocean waves under RCP8.5 emission scenario in the Mediterranean Sea

Abstract.

"Wind-generated ocean waves are key inputs for several studies and applications, both near the coast (coastal vulnerability assessment, coastal structures design, harbor operativity) and off-shore (a.o. oil and gas production, ship routes, and navigation safety). As such, the evaluation of trends in future wave climate is fundamental for the development of efficient policies in the framework of climate change adaptation and mitigation measures. This study focuses[...]"

 

Source: Ocean Dynamics
Authors: Francesco De Leo et al.
DOI: https://doi.org/10.1007/s10236-020-01419-8

Read the full article here.


Biomarker evidence for the occurrence of anaerobic ammonium oxidation in the eastern Mediterranean Sea during Quaternary and Pliocene sapropel formati

Abstract.

"The eastern Mediterranean Sea sedimentary record is characterised by intervals of organic rich sediment (sapropels), indicating periods of severe anoxia triggered by astronomical forcing. It has been hypothesized that nitrogen fixation was crucial in injecting the Mediterranean Sea with bioavailable nitrogen (N) during sapropel events. However, the evolution of the N biogeochemical cycle of sapropels is poorly understood. For example, the role of the complementary removal reaction, anaerobic ammonium oxidation (anammox), has not been investigated because the traditional lipid biomarkers for anammox, ladderane fatty acids, are not stable over long periods in the sedimentary record. [...]

Source: Biogeosciences
Authors: Darci Rush et al.
DOI: 10.5194/bg-2019-27

Read the full article here.

 


Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts

Abstract.

"Climate impacts on marine ecosystems may be exacerbated by other, more local stressors interacting synergistically, such as pollution and overexploitation of marine resources. The reduction of these human stressors has been proposed as an achievable way of retaining ecosystems within a “safe operating space” (SOS), where they remain resilient to ongoing climate change. However, the operability of an SOS requires a thorough understanding of the spatial distribution of these climate and human impacts. [...]"

Source: Scientific Reports
Authors: Francisco Ramírez et al.
DOI: 10.1038/s41598-018-33237-w

Read the full article here.


Hydrography in the Mediterranean Sea during a cruise with RV Tethys 2 in May 2015

Abstract.

"We report on data from an oceanographic cruise, covering western, central and eastern parts of the Mediterranean Sea, on the French research vessel Tethys 2 in May 2015. This cruise was fully dedicated to the maintenance and the metrological verification of a biogeochemical observing system based on a fleet of BGC-Argo floats. During the cruise, a comprehensive dataset of parameters sensed by the autonomous network was collected. [...]"

Source: Earth System Science Data (unter review)
Authors: Vincent Taillandier et al.
DOI: 10.5194/essd-2017-119

Read the full article here.


Observation of oxygen ventilation into deep waters through targeted deployment of multiple Argo-O2 floats in the north-western Mediterranean Sea

Abstract.

"During the winter 2013, an intense observation and monitoring was performed in the north-western Mediterranean Sea to study deep water formation process that drives thermohaline circulation and biogeochemical processes (HYMEX SOP2 and DEWEX projects). To observe intensively and continuously the impact of deep convection on oxygen (O2) ventilation, an observation strategy was based on the enhancement of the Argo-O2 floats to monitor the offshore dense water formation area (DWF) in the Gulf of Lion prior to and at the end of the convective period (December 2012 to April 2013) [...]"

Source: Oceans (An AGU Journal)
Authors: L.Coppola et al.
DOI: 10.1002/2016JC012594

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here