News

A compendium of bacterial and archaeal single-cell amplified genomes from oxygen deficient marine waters

Abstract.

"Oxygen-deficient marine waters referred to as oxygen minimum zones (OMZs) or anoxic marine zones (AMZs) are common oceanographic features. They host both cosmopolitan and endemic microorganisms adapted to low oxygen conditions. Microbial metabolic interactions within OMZs and AMZs drive coupled biogeochemical cycles resulting in nitrogen loss and climate active trace gas production and consumption. Global warming is causing oxygen-deficient waters to expand and intensify. [...]".

 

Source: Nature
Authors: Julia Anstett et al.
DOI: https://doi.org/10.1038/s41597-023-02222-y

Read the full article here.


'A bad time to be alive': Study links ocean deoxygenation to ancient die-off

"In a new study, Stanford researchers have strongly bolstered the theory that a lack of oxygen in Earth's oceans contributed to a devastating die-off approximately 444 million years ago. The new results further indicate that these anoxic (little- to no-oxygen) conditions lasted over 3 million years—significantly longer than similar biodiversity-crushing spells in our planet's history. Beyond deepening understandings of ancient mass extinction events, the findings have relevance for today: Global climate change is contributing to declining oxygen levels in the open ocean and coastal waters, a process that likely spells doom for a variety of species. [...]"

Source: Phys.org

Read the full article here.


Autotrophic Carbon Fixation Pathways Along the Redox Gradient in Oxygen‐Depleted Oceanic Waters

Abstract.

"Anoxic marine zones (AMZs), also known as ‘oxygen‐deficient zones’, contribute to the loss of fixed nitrogen from the ocean by anaerobic microbial processes. While these microbial processes associated with the nitrogen cycle have been extensively studied, those linked to the carbon cycle in AMZs have received much less attention, particularly the autotrophic carbon fixation —a crucial component of the carbon cycle. [...]"

Source: Environmental Microbiology Reports
Authors: Paula Ruiz‐Fernández et al.
DOI: 10.1111/1758-2229.12837

Read the full article here.


Stable aerobic and anaerobic coexistence in anoxic marine zones

Abstract.

"Mechanistic description of the transition from aerobic to anaerobic metabolism is necessary for diagnostic and predictive modeling of fixed nitrogen loss in anoxic marine zones (AMZs). In a metabolic model where diverse oxygen- and nitrogen-cycling microbial metabolisms are described by underlying redox chemical reactions, we predict a transition from strictly aerobic to predominantly anaerobic regimes as the outcome of ecological interactions along an oxygen gradient, obviating the need for prescribed critical oxygen concentrations. [...]"

Source: The ISME Journal 
Authors: Emily J. Zakem et al.
DOI: 10.1038/s41396-019-0523-8

Read the full article here.


Microbial metabolite fluxes in a model marine anoxic ecosystem

Abstract.

"Permanently anoxic regions in the ocean are widespread and exhibit unique microbial metabolic activity exerting substantial influence on global elemental cycles and climate. Reconstructing microbial metabolic activity rates in these regions has been challenging, due to the technical difficulty of direct rate measurements. In Cariaco Basin, which is the largest permanently anoxic marine basin and an important model system for geobiology, long‐term monitoring has yielded time series for the concentrations of biologically important compounds; however, the underlying metabolite fluxes remain poorly quantified. [...]"

Source: Geobiology
Authors: Stilianos Louca et al.
DOI: 10.1111/gbi.12357

Read the full article here.


Global niche of marine anaerobic metabolisms expanded by particle microenvironments

Abstract.

"In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. [...]"

Source: Nature Geoscience
Authors: Daniele Bianchi et al.
DOI: 10.1038/s41561-018-0081-0

Read the full article here.


Insights into the metabolic functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments

Abstract.

"Symbioses between anaerobic or microaerophilic protists and prokaryotes are common in anoxic and oxygen-depleted habitats ranging from marine sediments to gastrointestinal tracts. Nevertheless, little is known about the mechanisms of metabolic interaction between partners. In these putatively syntrophic associations, consumption of fermentative end products (e.g., hydrogen) by the prokaryotic symbionts is thought to facilitate protistan anaerobic metabolism.  [...]"

Source: Molecular Ecology
Authors: R. A. Beinart et al.
DOI: 10.1111/mec.14465

Read the full article here.


Microbial oceanography of anoxic oxygen minimum zones

Abstract.

"Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia.  [...]"

Source: Proceedings of the National Academy of Science of the United States of America (PNAS)
Authors: Osvaldo Ulloa et al.
DOI: 10.1073/pnas.1205009109

Full article

 


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here