News

EBUS Conference 2022

EBUS Conference: September 19 - 23, 2022 in Lima, Peru

"The Open Science Conference on Eastern Boundary Upwelling Systems (EBUS): Past, Present and Future and the Second International Conference on the Humboldt Current System are planned for September 19 - 23 in Lima, Peru. Although the conference aims to be in-person, options for virtual participation will be provided.

The meeting will bring together PhD students, early career scientists and world experts to understand, review, and synthesize what is known about dynamics, sensitivity, vulnerability and resilience of Eastern Boundary Upwelling Systems and their living resources to climate variability, change and extreme events."

For further information please visit the event's homepage.


../common/calendar Start Date: 9/19/22

Evidence of hypoxia in the eastern coast of the Gulf of California as induced by stable nitrogen isotopes in surface sediments

Abstract. 

"The Gulf of California is a highly biodiverse marine basin located in the northeast Mexican Pacific Ocean. In the past three decades, this basin has experienced increased hypoxia in shallow waters, which threatens its coastal ecosystems. The aim of this study is to analyze δ15N and δ13C isotopes of organic matter in coastal sediments to characterize sources of primary production and shifts in biogeochemical processes that reflect increasing oxygen deficiency in the shallow coast of the eastern Gulf of California. Surface sediments samples were collected from 8 to 47 m deep along the coastal margin of Sinaloa and Sonora. This region is characterized by the development of anthropogenic activities, which could be the main source of organic matter evidenced in the marine environment. [...]". 

 

Source: Science Direct

Authors: Alberto Sánchez et al. 

DOI: https://doi.org/10.1016/j.csr.2022.104716

Read the full article here.


EBUS Conference 2022 - Call for Abstracts closing tomorrow

Call for Abstracts closing tomorrow

EBUS Conference: September 19 - 23, 2022, in Lima, Peru

This is a quick reminder that the abstract submission deadline for the EBUS Conference 2022 ends tomorrow, May 7, 2022.

Please visit the event's homepage for further information. 


Observed denitrification in the northeast Arabian Sea during the winter-spring transition of 2009

Abstract. 

"The central and northeast Arabian Sea (AS) has an intense and thick oxygen minimum zone (OMZ) and denitrification zone. It is comparable with the strongest OMZ of the north-equatorial Pacific Ocean. Denitrification in the AS is revisited using a set of cruise observations collected during February–March of 2009 by the Centre for Marine Living Resources, India. The region possesses one of the most robust N* depleted water reaching as low as -20 μmol l−1 at depths (~600 m). In AS, the oxygen depletion is mainly due to sluggish circulation, weak lateral and vertical ventilation. The biological respiration in oxygen deficit condition depletes nitrate and further modifies the Redfield ratio at intermediate depths (200-600 m) from 16N:1P to 8N:1P. [...]".

 

Source: Science Direct

Authors: Anju Mallissery et al.

DOI: https://doi.org/10.1016/j.jmarsys.2021.103680

Read the full article here.


Oxygen gradients shape the unique structure of picoeukaryotic communities in the Bay of Bengal

Abstract. 

"Picoeukaryotic communities respond rapidly to global climate change and play an important role in marine biological food webs and ecosystems. The formation of oxygen minimum zones (OMZ) is facilitated by the stratification of seawater and higher primary production in the surface layer, and the marine picoeukaryotic community this low-oxygen environment is topic of interest. To better understand the picoeukaryotic community assembly mechanisms in an OMZ, we collected samples from the Bay of Bengal (BOB) in October and November 2020 and used 18S rDNA to study the picoeukaryotic communities and their community assembly mechanisms that they are controlled by in deep-sea and hypoxic zones. The results show that deterministic and stochastic processes combine to shape picoeukaryotic communities in the BOB. [...]".

 

Source: Science Direct

Authors: Zhuo Chen et al.

DOI: https://doi.org/10.1016/j.scitotenv.2021.152862

Read the full article here.


Covariation of Deep Antarctic Pacific Oxygenation and Atmospheric CO2 during the Last 770 kyr

Abstract. 

"We present new geochemical evidence of changes in oxygenation of the deep Antarctic Pacific over the last 770 kyr. Our data are derived from redox-sensitive metals and export production proxies extracted from gravity core ANT34/A2-10 at 4217 m water depth. Our results show that oxygen levels in the deep Antarctic Zone (AZ) varied in line with the release of deeply sequestered remineralized carbon to the atmosphere during glacial–interglacial (G–IG) cycles, with lower oxygen concentrations and more carbon storage during glacial periods. Subsequent reductions in the amount of carbon stored at depth were closely associated with improved ventilation during glacial terminations. [...]".

 

Source: Lithosphere

Authors: Zheng Tang et al. 

DOI: https://doi.org/10.2113/2022/1835176

Read the full article here.


Sensitivity of asymmetric oxygen minimum zones to mixing intensity and stoichiometry in the tropical Pacific using a basin-scale model

Abstract.

"The tropical Pacific Ocean holds the two largest oxygen minimum zones (OMZs) in the world's oceans, showing a prominent hemispheric asymmetry, with a much stronger and broader OMZ north of the Equator. However, many models have difficulties in reproducing the observed asymmetric OMZs in the tropical Pacific. Here, we apply a fully coupled basin-scale model to evaluate the impacts of stoichiometry and the intensity of vertical mixing on the dynamics of OMZs in the tropical Pacific. We first utilize observational data of dissolved oxygen (DO) to calibrate and validate the basin-scale model. Our model experiments demonstrate that enhanced vertical mixing combined with a reduced O:C utilization ratio can significantly improve our model capability of reproducing the asymmetric OMZs. Our study shows that DO concentration is more sensitive to biological processes over 200–400 m but to physical processes below 400 m. [...]".

 

Source: Geoscientific Model Development 

Authors: Kai Wang et al. 

DOI: https://doi.org/10.5194/gmd-15-1017-2022 

Read the full article here.


A transient oxygen increase in the Mesoproterozoic ocean at ∼1.44 Ga: Geochemical evidence from the Tieling Formation, North China Platform

Abstract.

"Oxygen availability is crucial for the evolution of eukaryotes in geological history, yet detailed Mesoproterozoic oceanic-atmospheric redox conditions remain enigmatic. In contrast to the generally accepted hypothesis of an anoxic mid-Proterozoic ocean and atmosphere, several transient oxygenation events may occur at the Earth’s surface during the Mesoproterozoic, especially for the period around 1.4 Ga. The North China Platform develops one of the most complete and continuous Mesoproterozoic stratigraphic successions globally, preserving key information on the redox state of the surface ocean–atmosphere system during the mid-Proterozoic. [...]".

 

Source: Science Direct

Authors: Yang Yu et al.

DOI: https://doi.org/10.1016/j.precamres.2021.106527

Read the full article here.


Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index

Abstract. 

"Marine oxygen minimum zones (OMZs) trap greenhouse gases, reduce livable habitats, a critical factor for these changes is the amount of dissolved oxygen (DO). The frequently used tool to reconstruct DO values, the Benthic Foraminifera Oxygen Index (BFOI), showed major shortcomings and lacks effectiveness. Therefore, we enhanced the BFOI and introduce enhanced BFOI (EBFOI) formulas by using all available data benthic foraminifers provide, calculating the whole livable habitat of benthic foraminifers, including bottom water oxygenation (BWO) and pore water oxygenation (PWO). Further, we introduce for the first time a transfer function to convert EBFOI vales directly into DO values, increasing efficiency by up to 38%. [...]".

 

Source: Nature Scientific Reports

Authors: Matthias Kranner et al. 

DOI: https://doi.org/10.1038/s41598-022-05295-8

Read the full article here.


Major Early-Middle Devonian oceanic oxygenation linked to early land plant evolution detected using high-resolution U isotopes of marine limestones

Abstract.

"The middle Paleozoic (∼420-350 Myr) records a major increase in ocean-atmosphere oxygen levels; however, the timing and pattern of oxygenation are poorly constrained. Two well-dated North American locations in Nevada and Illinois were used to generate a high-resolution U-isotopic profile (U) spanning ∼70 Myr of the middle Paleozoic. Stratigraphic and geochemical data support the interpretation that the Nevada profile represents a near-primary record of global-ocean redox variations. First-order U trends indicate strongly reducing oceans during the late Silurian and Early Devonian, terminated by a major oxygenation event near the Emsian-Eifelian boundary (∼395 Ma). More oxic seawater conditions persisted for the next 30+ Myr, but were punctuated by multiple Myr-scale anoxic events during the Middle-Late Devonian and Early Mississippian that correlate with known global biotic crises, positive C excursions, and widespread organic-rich facies deposition. [...]".

 

Source: Science Direct

Authors: Maya Elrick et al.

DOI: https://doi.org/10.1016/j.epsl.2022.117410

Read the full article here.


Showing 251 - 260 of 1,187 results.
Items per Page 10
of 119

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here