News

Redox geochemical signatures in Mediterranean sapropels: Implications to constrain deoxygenation dynamics in deep-marine settings

Abstract.

"Global warming and anthropogenic activity are boosting marine deoxygenation in many regions around the globe. Deoxygenation is a critical ocean stressor with profound implications for marine ecosystems and biogeochemical cycles. Understanding the dynamics and evolution of past deoxygenation events can enhance our knowledge of present-day and future impacts of climate change and anthropogenic pressure on marine environments. Many studies have reconstructed the evolution redox conditions of past deoxygenation events using geochemical proxies. [...]".

 

Source: Science Direct
Authors: Ricardo D. Monedero-Contreras et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111953

Read the full article here.


“Hypoxic” Silurian oceans suggest early animals thrived in a low-O2 world

Abstract.

"Atmospheric oxygen (O2) concentrations likely remained below modern levels until the Silurian–Devonian, as indicated by several recent studies. Yet, the background redox state of early Paleozoic oceans remains poorly constrained, hampering our understanding of the relationship between early animal evolution and O2. Here, we present a multi-proxy analysis of redox conditions in the Caledonian foreland basin to Baltica from the early to the mid-Silurian. [...]".

 

Source: Science Direct 
Authors: Emma R. Haxen et al.
DOI: https://doi.org/10.1016/j.epsl.2023.118416

Read the full article here.


Spatial and Temporal Redox Heterogeneity Controlled by a Fe(II), Anoxic Upwelling System in the Early Mesoproterozoic Ocean

Abstract. 

"The availability of oxygen and nutrients during the Mesoproterozoic (1.6–1.0 Ga) is thought to influence the rate of eukaryote evolution. The cause of the transition from low productivity in the upper Wumishan Formation to organic-rich sediments in the Hongshuizhuang Formation remains unknown. We report FeHR/FeT, Fepy/FeHR, MoEF, UEF, VEF, and [Ce/Ce*]SN in one core of the Yanliao Basin to study the redox evolution and compare it with other sections in different depths of the Yanliao Basin to get clues of the spatial and temporal redox heterogeneity. [...]".

 

Source: Wiley Online Library
Authors: Mingze Ye et al.
DOI: https://doi.org/10.1029/2023GL103598

Read the full article here.


Redox conditions and ecological resilience during Oceanic Anoxic Event 2 in the Western Interior Seaway

Abstract. 

"Oceanic Anoxic Events (OAEs) are important geological events that may be analogues to future climate-driven deoxygenation of our oceans. Much of the global ocean experienced anoxic conditions during the Cenomanian–Turonian OAE (OAE2; ∼94 Ma), whereas the Western Interior Seaway (WIS) experienced oxygenation at this time. Here, organic geochemical and palynological data generated from Cenomanian–Turonian age sediments from five sites in the WIS are used to investigate changing redox and ecological conditions across differing palaeoenvironments and palaeolatitudes. [...]".

 

Source: Science Direct
Authors: Libby J. Robinson et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111496

Read the full article here.


Global ocean redox changes before and during the Toarcian Oceanic Anoxic Event

Abstract. 

"Mesozoic oceanic anoxic events are recognized as widespread deposits of marine organic-rich mudrocks temporally associated with mass extinctions and large igneous province emplacement. The Toarcian Oceanic Anoxic Event is one example during which expanded ocean anoxia is hypothesized in response to environmental perturbations associated with emplacement of the Karoo–Ferrar igneous province. However, the global extent of total seafloor anoxia and the relative extent of euxinic (anoxic and sulfide-rich) and non-euxinic anoxic conditions during the Toarcian Oceanic Anoxic Event are poorly constrained. [...]".

 

Source: Nature
Authors: Alexandra Kunert & Brian Kendall
DOI: https://doi.org/10.1038/s41467-023-36516-x

Read the full article here.


Shallow- and deep-ocean Fe cycling and redox evolution across the Pliensbachian–Toarcian boundary and Toarcian Oceanic Anoxic Event in Panthalassa

Abstract.

"The late Pliensbachian to early Toarcian was characterized by major climatic and environmental changes, encompassing the early Toarcian Oceanic Anoxic Event (T-OAE, or Jenkyns Event, ∼183 Ma) and the preceding Pliensbachian–Toarcian boundary event (Pl/To). Information on seawater redox conditions through this time interval has thus far come mainly from European sections deposited in hydrographically restricted basins, and hence our understanding of the redox evolution of the open ocean (and in particular Panthalassa – the largest ocean to have existed) is limited. [...]".

 

Source: Science Direct 
Authors: Wenhan Chen et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117959

Read the full article here.


Constraining marine anoxia under the extremely oxygenated Permian atmosphere using uranium isotopes in calcitic brachiopods and marine carbonates

Abstract. 

"The redox chemistry change in ancient oceans has profoundly shaped the evolutionary trajectories of animals. Uranium isotopes (U) in marine carbonate sediments have widely been used to place quantitative constraints on the oxygenation state of the oceans through geological history. However, syndepositional and post-depositional diagenesis impose a positive and variable U offset in the carbonate sediments relative to contemporaneous seawater, leaving uncertainties on quantification of anoxic seafloor areas in the past. Studies from modern settings suggest that Low-Magnesium Calcite (LMC) in articulate brachiopod shells are diagenetic resistant materials that may faithfully record the U value of ancient seawater. [...]".

 

Source: Science Direct 
Authors: Wen-qian Wang et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117714

Read the full article here.


A Depth-Transect of Ocean Deoxygenation During the Paleocene-Eocene Thermal Maximum: Magnetofossils in Sediment Cores From the Southeast Atlantic

Abstract. 

"The Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma) presents a past analog for future global warming. Previous studies provided evidence for major loss of dissolved oxygen during the PETM, although understanding the degree and distribution of oxygen loss poses challenges. Magnetofossils produced by magnetotactic bacteria are sensitive to redox conditions in sediments and water columns, and have been used to reconstruct paleoredox conditions over a range of geological settings. [...]".

 

Source: JGR Solid Earth
Authors: Pengfei Xue et al.
DOI: https://doi.org/10.1029/2022JB024714

Read the full article here.


Ironstone as a proxy of Paleozoic ocean oxygenation

Abstract. 

"Marine ironstone is a Phanerozoic biochemical sedimentary rock that contains abundant primary iron. Although rare, ironstone is conspicuous in the Paleozoic sedimentary record. Its iron source remains contentious, with traditional models invoking a continentally derived source. Increasing sedimentologic evidence suggests that many Paleozoic ironstones formed along favourably oriented continental margins where coastal upwelling delivered ferruginous waters, with the postulated source of iron being deep-ocean hydrothermal fluids. [...]".

 

Source: Science Direct 
Authors: Edward J. Matheson et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117715

Read the full article here.


Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation

Abstract. 

"Most previous studies focused on the redox state of the deep water, leading to an incomplete understanding of the spatiotemporal evolution of the redox-stratified ocean during the Ediacaran–Cambrian transition. In order to decode the redox condition of shallow marine environments during the late Ediacaran, this study presents I/(Ca + Mg), carbon and oxygen isotope, major, trace, and rare earth element data of subtidal to peritidal dolomite from the Dengying Formation at Yangba, South China. [...]".

 

Source: Wiley Online Library
Authors: Yi Ding et al.
DOI: https://doi.org/10.1111/gbi.12520

Read the full article here.


Showing 1 - 10 of 19 results.
Items per Page 10
of 2

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here