News
Redox conditions and ecological resilience during Oceanic Anoxic Event 2 in the Western Interior Seaway
Abstract.
"Oceanic Anoxic Events (OAEs) are important geological events that may be analogues to future climate-driven deoxygenation of our oceans. Much of the global ocean experienced anoxic conditions during the Cenomanian–Turonian OAE (OAE2; ∼94 Ma), whereas the Western Interior Seaway (WIS) experienced oxygenation at this time. Here, organic geochemical and palynological data generated from Cenomanian–Turonian age sediments from five sites in the WIS are used to investigate changing redox and ecological conditions across differing palaeoenvironments and palaeolatitudes. [...]".
Source: Science Direct
Authors: Libby J. Robinson et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111496
Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction
Abstract.
"The timing and causation of the Capitanian (late Middle Permian) biocrisis remain controversial. Here, a detailed uranium-isotopic (δ238U) profile was generated for the mid-Capitanian to lower Wuchiapingian of the Penglaitan section (the Guadalupian/Lopingian Permian global stratotype) in South China for the purpose of investigating relationships between the biocrisis and coeval oceanic anoxic events (OAEs). Negative δ238U excursions indicate two distinct OAEs, a mid-Capitanian (OAE-C1) and an end-Capitanian (OAE-C2) event. [...]".
Source: Science Direct
Authors: Huyue Song et al.
DOI: https://doi.org/10.1016/j.epsl.2023.118128
Mesozoic Oceanic Anoxic Events and the Associated Black Shale Deposits as a Potential Source of Energy
Abstract.
"Oceanic anoxic events (OAEs) are considered as periods of oxygen deficiency in many oceans; accompanied by accumulation of organic-rich black shales. Mesozoic anoxic events were recognized based on the presence of black shales that are rich in organic matter. The most significant anoxic events during the Mesozoic are the Early Toarcian, the Early Aptian, and the Cenomanian–Turonian. The less significant events are the Valanginian-Hauterivian, the Hauterivian-Barremian, the Aptian-Albian, the Late Albian, the Albian-Cenomanian, and the Coniacian-Santonian. [...]".
Source: Springer Nature
Authors: Tarek Anan & Adam El-Shahat
DOI: https://doi.org/10.1007/978-3-030-95637-0_7
Phytoplankton dynamics and nitrogen cycling during Oceanic Anoxic Event 2 (Cenomanian/Turonian) in the upwelling zone of the NE proto-North Atlantic
Abstract.
"The Cenomanian-Turonian (Late Cretaceous) climate warming was closely coupled to profound perturbations of biogeochemical cycles and ecosystems. The occurrence of organic matter-rich sediments across various depositional environments of the proto-North Atlantic hereby marks severe oxygen-deficient conditions, culminating in Oceanic Anoxic Event (OAE 2) at the Cenomanian/Turonian boundary. Here we combine bulk, isotope and molecular geochemical techniques to characterize trends in organic matter accumulation and its relationship to biogeochemical cycling (nitrogen, carbon) and marine phytoplankton community shifts [...]".
Source: Science Direct
Authors: Wolfgang Ruebsam & Lorenz Schwark
DOI: https://doi.org/10.1016/j.gloplacha.2023.104117
Reconstructing ocean oxygenation changes from U/Ca and U/Mn in foraminiferal coatings: Proxy validation and constraints on glacial oxygenation changes
Abstract.
"Deep-sea oxygen concentrations reflect combined effects of air-sea exchange in high-latitude surface waters, ventilation through ocean circulation and the organic carbonremineralization at depth. Reconstruction of past bottom water oxygen (BWO) concentrations has been challenging due to limitations of each existing BWO proxy whose fidelity may be complicated by diagenetic or depositional factors. Therefore, evaluations on BWO changes with multi-proxy approach are always preferred. In this study, we exploit the authigenic uranium content on mixed planktonic foraminiferal coatings as a BWO proxy by presenting new foraminiferal [...]".
Source: Science Direct
Authors: Rong Hu et al.
DOI: https://doi.org/10.1016/j.quascirev.2023.108028
Molybdenum isotope evidence from restricted-basin mudstones for an intermediate extent of oxygenation in the late Ediacaran ocean
Abstract.
"The Mo isotope composition of late Ediacaran global seawater and the global extent of ocean oxygenation are still debated due to the complex controls on sedimentary Mo isotope compositions and the rarity with which sediments directly capture global seawater Mo isotope compositions. Deep-water sulfidic sediments from modern severely restricted basins like the Black Sea have the best chance of capturing global seawater Mo isotope compositions. However, few studies have focused on sedimentary Mo isotope variations and their causes in late Ediacaran restricted basins. [...]".
Source: Science Direct
Authors: Zhaozhao Tan et al.
DOI: https://doi.org/10.1016/j.chemgeo.2023.121410
Manganous water column in the Tethys Ocean during the Permian-Triassic transition
Abstract.
"Ocean anoxia was one of the key killing mechanisms responsible for the end-Permian mass extinction (∼252 Ma). However, the temporal evolution and the triggering mechanisms of the end-Permian anoxia are controversial, with the current view being that the water column deoxygenation was a spatially and temporally heterogeneous event. Here, we use cerium-anomalies, uranium contents and rare earth element and yttrium (REY) compositions measured on the carbonate fraction of samples from two marine sections in Armenia and South China to constrain the evolution of end-Permian marine anoxia. [...]".
Source: Science Direct
Authors: Johann Müller et al.
DOI: https://doi.org/10.1016/j.gloplacha.2023.104067
Basin-scale reconstruction of euxinia and Late Devonian mass extinctions
Abstract.
"The Devonian–Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean–atmosphere oxidation states, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering, glacioeustasy, eutrophication and anoxic expansion in epicontinental seas, and mass extinction events. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). [...]".
Source: Nature
Authors: Swapan K. Sahoo et al.
DOI: https://doi.org/10.1038/s41586-023-05716-2
Rare earth element signatures of Doushantuo cap dolostones capture an increase in oxygen in the anoxic Ediacaran ocean
Abstract.
"The Rare Earth Element (REE) systematics of the post-Marinoan cap dolostones reflect the marine redox conditions and chemistry in the immediate aftermath of the snowball Earth. Rare earth elements and yttrium (REY) compositions in the Doushantuo cap dolostones that directly overlie Nantuo glacial diamictites in south China are determined from the inner shelf to the slope. In general, shale-normalized REY patterns (REYSN) of the cap dolostones show significant fractionations that are characterized by light REE depletion, slight middle REE enrichment relative to the light and heavy REEs, positive Eu anomalies, and slightly super-chondritic Y/Ho ratios. [...]".
Source: Science Direct
Authors: Min Ren & Ruifan Li
DOI: https://doi.org/10.1016/j.sedgeo.2023.106343
Arctic deep-water anoxia and its potential role for ocean carbon sink during glacial periods
Abstract.
"Deep water freshening beneath pan-Arctic ice shelves has recently been proposed based on the absence of excess thorium in glacial Arctic sediments. This profound proposal requires scrutiny of Arctic paleohydrology during past glacial periods. Here, we present structural and geochemical results of inorganic authigenic carbonates in deep-sea glacimarine sediments from the Mendeleev Ridge, western Arctic Ocean over the last 76 kyr. Our results suggest that Polar Deep Water in the western Arctic became brackish and anoxic during stadial periods. We argue that sediment-laden hyperpycnal meltwater discharged from paleo-ice sheets filled much of the water column [...]".
Source: Nature
Authors: Kwangchul Jang et al.
DOI: https://doi.org/10.1038/s43247-023-00708-6
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.