News
Subpolar gyre decadal variability explains the recent oxygenation in the Irminger Sea
Abstract.
"Accurate monitoring of the long-term trend of oxygen content at global scale requires a better knowledge of the regional oxygen variability at interannual to decadal time scale. Here, we combined the Argo dataset and repeated ship-based sections to investigate the drivers of the oxygen variability in the North Atlantic Ocean, a key region for the oxygen supply into the deep ocean. We focus on the Labrador Sea Water in the Irminger Sea over the period 1991–2018 and we show that the oxygen solubility explains less than a third of the oxygen variability. [...]".
Source: Nature
Authors: Charlène Feucher et al.
DOI: https://doi.org/10.1038/s43247-022-00570-y
Intermediate water circulation drives distribution of Pliocene Oxygen Minimum Zones
Abstract.
"Oxygen minimum zones (OMZs) play a critical role in global biogeochemical cycling and act as barriers to dispersal for marine organisms. OMZs are currently expanding and intensifying with climate change, however past distributions of OMZs are relatively unknown. Here we present evidence for widespread pelagic OMZs during the Pliocene (5.3-2.6 Ma), the most recent epoch with atmospheric CO2 analogous to modern (~400-450 ppm). The global distribution of OMZ-affiliated planktic foraminifer, Globorotaloides hexagonus, and Earth System and Species Distribution Models show [...]".
Source: Nature
Authors: Catherine V. Davis et al.
DOI: https://doi.org/10.1038/s41467-022-35083-x
The Peruvian oxygen minimum zone was similar in extent but weaker during the Last Glacial Maximum than Late Holocene
Abstract.
"Quantifying past oxygen concentrations in oceans is crucial to improving understanding of current global ocean deoxygenation. Here, we use a record of pore density of the epibenthic foraminifer Planulina limbata from the Peruvian Oxygen Minimum Zone to reconstruct oxygen concentrations in bottom waters from the Last Glacial Maximum to the Late Holocene at 17.5°S about 500 meters below the sea surface. We found that oxygen levels were 40% lower during the Last Glacial Maximum than during the Late Holocene (about 6.7 versus 11.1 µmol/kg, respectively). [...]".
Source: Nature
Authors: Nicolaas Glock et al.
DOI: https://doi.org/10.1038/s43247-022-00635-y
Volcanic trigger of ocean deoxygenation during Cordilleran ice sheet retreat
Abstract.
"North Pacific deoxygenation events during the last deglaciation were sustained over millennia by high export productivity, but the triggering mechanisms and their links to deglacial warming remain uncertain. Here we find that initial deoxygenation in the North Pacific immediately after the Cordilleran ice sheet (CIS) retreat was associated with increased volcanic ash in seafloor sediments. Timing of volcanic inputs relative to CIS retreat suggests that regional explosive volcanism was initiated by ice unloading. […]".
Source: Nature
Authors: Jianghui Du et al.
DOI: https://doi.org/10.1038/s41586-022-05267-y
Seasonal nearshore ocean acidification and deoxygenation in the Southern California Bight
Abstract.
"The California Current System experiences seasonal ocean acidification and hypoxia (OAH) owing to wind-driven upwelling, but little is known about the intensity, frequency, and depth distribution of OAH in the shallow nearshore environment. Here we present observations of OAH and dissolved inorganic carbon and nutrient parameters based on monthly transects from March 2017 to September 2018 extending from the surf zone to the ~ 40 m depth contour in La Jolla, California. Biologically concerning OAH conditions were observed at depths as shallow as 10 m and as close as 700 m to the shoreline. [...]".
Source: Scientific Reports
Authors: Samuel A. H. Kekuewa et al.
DOI: https://doi.org/10.1038/s41598-022-21831-y
Deglacial restructuring of the Eastern equatorial Pacific oxygen minimum zone
Abstract.
"Oxygenation in the Eastern Equatorial Pacific is responsive to ongoing climate change in the modern ocean, although whether the region saw a deglacial change in extent or position of the Oxygen Minimum Zone remains poorly constrained. Here, stable isotopes from the shells of an Oxygen Minimum Zone-dwelling planktic foraminifer are used to reassess the position of the mid-water Oxygen Minimum Zone relative to both the thermocline and benthos. Oxygen isotopes record a rapid shoaling of the Oxygen Minimum Zone towards the thermocline associated with Heinrich Stadial 1 and persisting through the deglaciation. [...]".
Source: Communications Earth & Environment
Authors: Catherine V. Davis
DOI: https://doi.org/10.1038/s43247-022-00477-8
Mid-Cretaceous marine Os isotope evidence for heterogeneous cause of oceanic anoxic events
"During the mid-Cretaceous, the Earth experienced several environmental perturbations, including an extremely warm climate and Oceanic Anoxic Events (OAEs). Submarine volcanic episodes associated with formation of large igneous provinces (LIPs) may have triggered these perturbations. The osmium isotopic ratio (187Os/188Os) is a suitable proxy for tracing hydrothermal activity associated with the LIPs formation, but 187Os/188Os data from the mid-Cretaceous are limited to short time intervals. Here we provide a continuous high-resolution marine 187Os/188Os record covering all mid-Cretaceous OAEs. Several OAEs (OAE1a, Wezel and Fallot events, and OAE2) correspond to unradiogenic 187Os/188Os shifts, suggesting that they were triggered by massive submarine volcanic episodes. However, minor OAEs (OAE1c and OAE1d), which do not show pronounced unradiogenic 187Os/188Os shifts, were likely caused by enhanced monsoonal activity. [...]".
Source: Nature Communications
Authors: Hironao Matsumoto et al.
DOI: https://doi.org/10.1038/s41467-021-27817-0
GO-SHIP Easy Ocean: Gridded ship-based hydrographic section of temperature, salinity, and dissolved oxygen
Abstract.
"Despite technological advances over the last several decades, ship-based hydrography remains the only method for obtaining high-quality, high spatial and vertical resolution measurements of physical, chemical, and biological parameters over the full water column essential for physical, chemical, and biological oceanography and climate science. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) coordinates a network of globally sustained hydrographic sections. These data provide a unique data set that spans four decades, comprised of more than 40 cross-ocean transects. The section data are, however, difficult to use owing to inhomogeneous format. The purpose of this new temperature, salinity, and dissolved oxygen data product is to combine, reformat and grid these data measured by Conductivity-Temperature-Depth-Oxygen (CTDO) profilers in order to facilitate their use by a wider audience. [...]".
Source: Nature Scientific Data
Authors: Katsuro Katsumata et al.
DOI: https://doi.org/10.1038/s41597-022-01212-w
A committed fourfold increase in ocean oxygen loss
Abstract.
"Less than a quarter of ocean deoxygenation that will ultimately be caused by historical CO2 emissions is already realized, according to millennial-scale model simulations that assume zero CO2 emissions from year 2021 onwards. About 80% of the committed oxygen loss occurs below 2000 m depth, where a more sluggish overturning circulation will increase water residence times and accumulation of respiratory oxygen demand. According to the model results, the deep ocean will thereby lose more than 10% of its pre-industrial oxygen content even if CO2 emissions and thus global warming[...]"
Source: Nature Communications
Authors: Andreas Oschlies
DOI: https://doi.org/10.1038/s41467-021-22584-4
Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs
Abstract.
"Microplastics are increasingly recognized as ubiquitous global contaminants, but questions linger regarding their source, transport and fate. We document the widespread distribution of microplastics in near-surface seawater from 71 stations across the European and North American Arctic - including the North Pole. We also characterize samples to a depth of 1,015 m in the Beaufort Sea. Particle abundance correlated with longitude, with almost three times more particles in the eastern Arctic compared to the west. Polyester comprised[...]"
Source: Nature Communications
Authors: Peter S. Ross et al.
DOI: https://doi.org/10.1038/s41467-020-20347-1
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.