News

Constraints on Early Paleozoic deep-ocean oxygen concentrations from the iron geochemistry of the Bay of Islands ophiolite

Abstract. 

"The deep ocean is generally considered to have changed from anoxic in the Precambrian to oxygenated by the Late Paleozoic (∼420–400 Ma) due to changes in atmospheric oxygen concentrations. When the transition occurred, that is, in the Early Paleozoic or not until the Late Paleozoic, is less well constrained. To address this, we measured Fe3+/ΣFe of volcanic rocks, sheeted dykes, gabbros, and ultramafic rocks from the Early Paleozoic (∼485 Ma) Bay of Islands (BOI) ophiolite as a proxy for hydrothermal alteration in the presence or absence of O2 derived from deep marine fluids. [...]".

 

Source: Geochemistry, Geophysics, Geosystems 
Authors: Daniel A. Stolper et al. 
DOI: https://doi.org/10.1029/2021GC010196

Read the full article here.


Geochemistry of sediments in contact with oxygen minimum zone of the eastern Arabian Sea: Proxy for palaeo-studies

Abstract. 

"The Arabian Sea encompasses oxygen minimum zone with denitrifying conditions. For the present study, sediments were collected across three transects off Goa transect (GT), Mangalore transect (MT) and Kochi transect (KT) in contact with water column dissolved oxygen (DO) range of 1.4–118.0 µM. Sediments were investigated for texture, clay mineralogy, total organic carbon (Corg), total nitrogen, CaCO3, δ15N, δ13C, metal content to infer their distribution with changing DO and their use as possible palaeo-proxies. The Corg (0.9–8.6%) is largely marine and δ15N from GT and MT preserves signatures of higher water column denitrification. [...]". 

 

Source: Journal of Earth System Science 

Authors: Pratima M. Kessarkar et al. 

DOI: https://doi.org/10.1007/s12040-022-01823-2 

Read the full article here.


Sea urchin chronicles. The effect of oxygen super-saturation and marine polluted sediments from Bagnoli-Goroglio Bay on different life stages of the

sea urchin Paracentrotus lividus

Abstract.

"In marinas and harbours, the accumulation of pollutants in sediments, combined with poor exchange of water with the open sea, poses a major environmental threat. The presence of photosynthetic organisms and the related oxygen production, however, may alleviate the negative effects of environmental contamination on heterotrophic organisms, enhancing their physiological defences. Furthermore, possible transgenerational buffer effects may increase the ability of natural populations to face environmental[...]"

 

Source: Science Direct
Authors: Antonia Chiarore et al.
DOI: https://doi.org/10.1016/j.marenvres.2020.104967

Read the full article here.


High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site

Abstract.

"Methane (CH4) in marine sediments has the potential to contribute to changes in the ocean and climate system. Physical and biochemical processes that are difficult to quantify with current standard methods such as acoustic surveys and discrete sampling govern the distribution of dissolved CH4 in oceans and lakes. [...]"

Source: Ocean Science
Authors: Pär Jansson et al. 
DOI: 10.5194/os-15-1055-2019

Read the full article here.


Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments

Abstract.

"Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. [...]"

Source: Nature Microbiology
Authors: Adam J. Kessler et al.
DOI: 10.1038/s41564-019-0391-z

Read the full article here.


Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea

Abstract.

"Ca. Scalindua is an exclusive genus of anammox bacteria known to exhibit low diversity found in deep-sea ecosystems. In this study, the community composition of anammox bacteria in surface sediments of the South China Sea (SCS) was analyzed using high-throughput sequencing techniques. Results indicated that the dominant OTUs were related to three different genera of anammox bacteria, identified as Ca. Scalindua (87.29%), Ca. Brocadia (10.27%) and Ca. Kuenenia (2.44%), in order of decreasing abundance. [...]"

Source: FEMS Microbiology Ecology
Authors: Jiapeng Wu et al.
DOI: 10.1093/femsec/fiz013

Read the full article here.


Widespread seawater circulation in 18–22 Ma oceanic crust: Impact on heat flow and sediment geochemistry

Abstract.

"On the basis of heat-flow measurements, seismic mapping, and sediment pore-water analysis, we demonstrate widespread and efficient ventilation of the 18–22 Ma oceanic crust of the northeast equatorial Pacific Ocean. Recharge and discharge appear to be associated with basement outcrops, including seamounts and north-south–trending faults, along which sediment cover thins out and volcanic rocks are exposed. Low-temperature hydrothermal circulation through the volcanic crust leads to the reduction of heat flow through overlying sediments, with measured heat-flow values that are well below those expected from conductive cooling curves for lithosphere of this age. [...]"

Source: Geology
Authors: Thomas Kuhn et al.
DOI: 10.1130/G39091.1

Read the full article here.


Coastal hypoxia and sediment biogeochemistry

Abstract.

"The intensity, duration and frequency of coastal hypoxia (oxygen concentration <63 μM) are increasing due to human alteration of coastal ecosystems and changes in oceanographic conditions due to global warming. Here we provide a concise review of the consequences of coastal hypoxia for sediment biogeochemistry. Changes in bottom-water oxygen levels have consequences for early diagenetic pathways (more anaerobic at expense of aerobic pathways), the efficiency of re-oxidation of reduced metabolites and the nature, direction and magnitude of sediment-water exchange fluxes. Hypoxia may also lead to more organic matter accumulation and burial and the organic matter eventually buried is also of higher quality, i.e. less degraded. [...]"

Source: Biogeosciences (2009)
Authors: J. J. Middelburg and L. A. Levin
DOI: 10.5194/bg-6-1273-2009

Full article