News

The Oceans Are Warming Even Faster Than We Previously Thought

"The oceans have long been considered our planet's heat sponge - a 2014 report from the Intergovernmental Panel on Climate Change (IPCC) stated that the oceans had absorbed 93% of the excess heat that greenhouse gases have trapped within the Earth's atmosphere. However, a recent study shows that the world's oceans have absorbed 60% more heat over the past 25 years than initially thought. [...]"

Source: Forbes
Author: Priya Shukla

Read the full article here.


Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

Abstract.

"The ocean is the main source of thermal inertia in the climate system. During recent decades, ocean heat uptake has been quantified by using hydrographic temperature measurements and data from the Argo float program, which expanded its coverage after 2007. However, these estimates all use the same imperfect ocean dataset and share additional uncertainties resulting from sparse coverage, especially before 2007.  [...]"

Source: Nature
Authors: L. Resplandy et al.
DOI: 10.1038/s41586-018-0651-8

Read the full article here.


Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation

Abstract.

"Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50–100 years, but with greater oxygen declines in intermediate waters (100–600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. [...]"

Source: Annual Review of Marine Science
Author: L. Levin
DOI: 10.1146/annurev-marine-121916-063359

Read the full article here.


Investigator Voyage to Address Puzzle of Southern Ocean Current

"An IMAS-led voyage on the Marine National Facility research vessel Investigator today sailed from Hobart with scientists aiming to solve a Southern Ocean puzzle with important ramifications for the global climate.

The researchers will survey a ‘standing meander’ south of Tasmania that they hope will help them to understand why the east-flowing Antarctic Circumpolar Current (ACC) has remained constant despite westerly winds strengthening by 20% over the last two decades. [...]"

Source: IMAS

Read the full article here.


Global-ocean redox variations across the Smithian-Spathian boundary linked to concurrent climatic and biotic changes

Abstract.

"The Smithian-Spathian boundary (SSB) was an interval characterized by a major global carbon cycle perturbation, climatic cooling from a middle/late Smithian boundary hyperthermal condition, and a major setback in the recovery of marine necto-pelagic faunas from the end-Permian mass extinction. Although the SSB has been linked to changes in oceanic redox conditions, key aspects of this redox variation (e.g., duration, extent, and triggering mechanisms) and its relationship to coeval climatic and biotic changes remain unresolved. [...]"

Source: Earth-Science Reviews
Authors: Feifei Zhang et al.
DOI: 10.1016/j.earscirev.2018.10.012

Read the full article here.


The impact of ocean acidification on the byssal threads of the blue mussel (Mytilus edulis)

Abstract.

"Blue mussel (Mytilus edulis) produce byssal threads to anchor themselves to the substrate. These threads are always exposed to the surrounding environmental conditions. Understanding how environmental pH affects these threads is crucial in understanding how climate change can affect mussels. This work examines three factors (load at failure, thread extensibility, and total thread counts) that indicate the performance of byssal threads as well as condition index to assess impacts on the physiological condition of mussels held in artificial seawater acidified by the addition of CO2. [...]"

Source: PLOS ONE
Authors: Grant Dickey et al.
DOI: 10.1371/journal.pone.0205908

Read the full article here.


(2010) The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry

Abstract.

"Climate change, rising atmospheric carbon dioxide, excess nutrient inputs, and pollution in its many forms are fundamentally altering the chemistry of the ocean, often on a global scale and, in some cases, at rates greatly exceeding those in the historical and recent geological record. Major observed trends include a shift in the acid-base chemistry of seawater, reduced subsurface oxygen both in near-shore coastal water and in the open ocean, rising coastal nitrogen levels, and widespread increase in mercury and persistent organic pollutants. [...]"

Source: Science
Author: Scott C. Doney
DOI: 10.1126/science.1185198

Read the full article here.


Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts

Abstract.

"Climate impacts on marine ecosystems may be exacerbated by other, more local stressors interacting synergistically, such as pollution and overexploitation of marine resources. The reduction of these human stressors has been proposed as an achievable way of retaining ecosystems within a “safe operating space” (SOS), where they remain resilient to ongoing climate change. However, the operability of an SOS requires a thorough understanding of the spatial distribution of these climate and human impacts. [...]"

Source: Scientific Reports
Authors: Francisco Ramírez et al.
DOI: 10.1038/s41598-018-33237-w

Read the full article here.


Last interglacial ocean changes in the Bahamas: climate teleconnections between low and high latitudes

Abstract.

"Paleorecords and modeling studies suggest that instabilities in the Atlantic Meridional Overturning Circulation (AMOC) strongly affect the low-latitude climate, namely via feedbacks on the Atlantic Intertropical Convergence Zone (ITCZ). Despite the pronounced millennial-scale overturning and climatic variability documented in the subpolar North Atlantic during the last interglacial period (MIS 5e), studies on cross-latitudinal teleconnections remain very limited. This precludes a full understanding of the mechanisms controlling subtropical climate evolution across the last warm cycle. [...]"

Source: Climate of the Past
Authors: Anastasia Zhuravleva and Henning A. Bauch
DOI: 10.5194/cp-14-1361-2018

Read the full article here.


Projected amplification of food web bioaccumulation of MeHg and PCBs under climate change in the Northeastern Pacific

Abstract.

"Climate change increases exposure and bioaccumulation of pollutants in marine organisms, posing substantial ecophysiological and ecotoxicological risks. Here, we applied a trophodynamic ecosystem model to examine the bioaccumulation of organic mercury (MeHg) and polychlorinated biphenyls (PCBs) in a Northeastern Pacific marine food web under climate change. We found largely heterogeneous sensitivity in climate-pollution impacts between chemicals and trophic groups. Concentration of MeHg and PCBs in top predators, including resident killer whales, is projected to be amplified by 8 and 3%, respectively, by 2100 under a high carbon emission scenario (Representative Concentration Pathway 8.5) relative to a no-climate change control scenario. [...]"

Source: Scientific Reports
Authors: Juan José Alava et al.
DOI: 10.1038/s41598-018-31824-5

Read the full article here.


Showing 1 - 10 of 41 results.
Items per Page 10
of 5