News

Dimethylsulfide (DMS) production in polar oceans may be resilient to ocean acidification

Abstract.

"Emissions of dimethylsulfide (DMS) from the polar oceans play a key role in atmospheric processes and climate. Therefore, it is important we increase our understanding of how DMS production in these regions may respond to environmental change. The polar oceans are particularly vulnerable to ocean acidification (OA). However, our understanding of the polar DMS response is limited to two studies conducted in Arctic waters, where in both cases DMS concentrations decreased with increasing acidity. [...]"

Source: Biogeosciences (under Review)
Authors: Frances E. Hopkins et al.
DOI: 10.5194/bg-2018-55

Read the full article here.


Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean

Abstract.

"Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification1, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the ‘aragonite saturation horizon’—below which waters are undersaturated with respect to a particular calcium carbonate, aragonite—to move to shallower depths (to shoal), exposing corals to corrosive waters. [...]"

Source: Nature
Authors: Fiz F. Perez et al.
DOI: 10.1038/nature25493

Read the full article here.


Carbonate chemistry of an in-situ free-ocean CO2 enrichment experiment (antFOCE) in comparison to short term variation in Antarctic coastal waters

Abstract.

"Free-ocean CO2 enrichment (FOCE) experiments have been deployed in marine ecosystems to manipulate carbonate system conditions to those predicted in future oceans. We investigated whether the pH/carbonate chemistry of extremely cold polar waters can be manipulated in an ecologically relevant way, to represent conditions under future atmospheric CO2 levels, in an in-situ FOCE experiment in Antarctica. [...]"

Source: Scientific Reports
Authors: J. S. Stark et al.
DOI: 10.1038/s41598-018-21029-1

Read the full article here.


Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations

Abstract.

"Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. [...]"

Source: PLoS ONE
Authors: Luis G. Egea et al.
DOI: 10.1371/journal.pone.0192402

Read the full article here.


Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model

Abstract.

"Coastal upwelling systems, such as the California Current System (CalCS), naturally experience a wide range of O2 concentrations and pH values due to the seasonality of upwelling. Nonetheless, changes in the El Niño–Southern Oscillation (ENSO) have been shown to measurably affect the biogeochemical and physical properties of coastal upwelling regions. In this study, we use a novel, high-resolution global climate model (GFDL-ESM2.6) to investigate the influence of warm and cold ENSO events on variations in the O2 concentration and the pH of the CalCS coastal waters. [...]"

Source: Ocean Science
Authors:  Giuliana Turi et al.
DOI: 10.5194/os-14-69-2018

Read the full article here.


Top Ocean Research Organizations Develop Unified Voice at Scripps Meeting

Global research organization seeks to leverage technological advances to promote ocean protection

"Several dozen of the world’s top oceanographers were at Scripps Institution of Oceanography at the University of California San Diego last week to showcase advances in the technology used to observe the oceans.

At the 19th annual meeting of the Partnership for Observation of the Global Oceans (POGO), which Scripps Oceanography co-founded in 1999, leaders said that the organization has evolved from setting up scientific observation networks in the global oceans to encouraging the spread of oceanographic expertise worldwide. Now, said POGO Chair Karen Wiltshire, the organization seeks to create consensus among scientists to create a global voice calling attention to issues ranging from ocean acidification to deoxygenation and sustainable fishing. [...]"

Source: Scripps Institution of Oceanography

Read the full article here.


Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

Abstract.

"The Southern Ocean provides a vital service by absorbing about one-sixth of humankind's annual emissions of CO2. This comes with a cost – an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution."

Source: Biogeosciences
Authors: Thomas W. Trull et al.
DOI: 10.5194/bg-15-31-2018

Read the full article here.


Community composition in mangrove ponds with pulsed hypoxic and acidified conditions

Abstract.

"The potential resilience of biological communities to accelerating rates of global change has received considerable attention. We suggest that some shallow aquatic ecosystems, where temperature, dissolved oxygen (DO), and pH can exhibit extreme variation on short timescales of hours or days, provide an opportunity to develop a mechanistic understanding of species persistence and community assembly under harsh environmental conditions.  [...]"

Source: Ecosphere (ESA journal)
Authors: Keryn B. Gedan et al.
DOI: 10.1002/ecs2.2053

Read the full article here.


Evaluating the promise and pitfalls of a potential climate change–tolerant sea urchin fishery in southern California

Abstract.

"Marine fishery stakeholders are beginning to consider and implement adaptation strategies in the face of growing consumer demand and potential deleterious climate change impacts such as ocean warming, ocean acidification, and deoxygenation. This study investigates the potential for development of a novel climate change-tolerant sea urchin fishery in southern California based on Strongylocentrotus fragilis (pink sea urchin), a deep-sea species whose peak density was found to coincide with a current trap-based spot prawn fishery (Pandalus platyceros) in the 200–300-m depth range. [...]"

Source: ICES Journal of Marine Science
Authors: Kirk N Sato et al.
DOI: 10.1093/icesjms/fsx225

Read the full article here.


Deep oceans may acidify faster than anticipated due to global warming

Abstract.

"Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. [...]"

Source: Nature Climate Change
Authors: Chen-Tung Arthur Chen
DOI: 10.1038/s41558-017-0003-y

Read the full article here.


Showing 1 - 10 of 23 results.
Items per Page 10
of 3