News
Aquatic Productivity under Multiple Stressors
Abstract.
"Aquatic ecosystems are responsible for about 50% of global productivity. They mitigate climate change by taking up a substantial fraction of anthropogenically emitted CO2 and sink part of it into the deep ocean. Productivity is controlled by a number of environmental factors, such as water temperature, ocean acidification, nutrient availability, deoxygenation and exposure to solar UV radiation. Recent studies have revealed that these factors may interact to yield additive, synergistic or antagonistic effects. While ocean warming and deoxygenation are supposed to affect mitochondrial respiration oppositely [...]".
Source: MDPI
Authors: Donat-P. Häder & Kunshan Gao
DOI: https://doi.org/10.3390/w15040817
Editorial: Regional coastal deoxygenation and related ecological and biogeochemical modifications in a warming climate
Abstract.
"Coastal ecosystems play tremendous roles in socio-economic development, but their functions are degrading due to human activities. One of the most alarming degradations is coastal deoxygenation, driven primarily by the over-enrichment of anthropogenic nutrients and organic matter (eutrophication) in the coastal waters. The coastal deoxygenation has led to the worldwide spread of hypoxic zones (where dissolved oxygen concentration is less than 2 mg/L), with the number of reported hypoxic sites increasing from 45 in the 1960s to around 700 nowadays. Besides being perturbed by human activities locally, coastal waters respond more rapidly than [...]".
Source: Frontiers
Authors: Wenxia Zhang et al.
DOI: https://doi.org/10.3389/fmars.2023.1146877
Warming, Acidification and Deoxygenation of the Ocean
Abstract.
"The ocean plays an essential role in regulating Earth’s climate. The ocean provides many services, but two crucial ones are its ability to take up heat and carbon dioxide (CO2) from the atmosphere and cycle both around the world in its vast currents, as well as store them away long term. The ocean is changing rapidly and often unnoticed by the general public. However, as the effects of climate change become more prevalent on the ocean, we will start to see a direct impact on human society. This chapter discusses three main climate change effects on the ocean: ocean warming, acidification, and loss of oxygen. [...]".
Source: Springer Nature
Authors: Helen S. Findlay
DOI: https://doi.org/10.1007/978-3-031-10812-9_2
Frontiers in Marine Science special issue on ocean deoxygenation: Call for papers
Call for paper manuscripts
We would like to draw your attention to a call for paper manuscripts for a special issue on "Constraining Uncertainties in Hindcasts and Future Projections of Marine Deoxygenation" in Frontiers in Marine Science.
The paper manuscript submission deadline is 7 April 2023.
Further information: https://www.frontiersin.org/research-topics/24190/constraining-uncertainties-in-hindcasts-and-future-projections-of-marine-deoxygenation.
Marine bioturbation collapse during Early Jurassic deoxygenation: implications for post-extinction marine ecosystem functioning
Abstract.
"Climate change is undermining the health and integrity of seafloor ecosystems, with declines in bioturbation expected to impact future ecosystem functioning. We explored changes in the nature and degree of bioturbation during Early Jurassic global warming and ocean deoxygenation. Understanding how these communities responded can help anticipate how bioturbation and ecosystem functioning might change over large spatial and temporal scales. Trace and body fossils from outcrop and core in the Cleveland Basin, UK show how healthy seafloor communities deteriorated through the Pliensbachian spinatum Zone, and macroinfaunal behaviour [...]".
Source: Geological Society of London
Authors: Bryony A. Caswell & Liam Herringshaw
DOI: https://doi.org/10.1144/SP529-2022-226
Sedimentary molybdenum and uranium: Improving proxies for deoxygenation in coastal depositional environments
Abstract.
"Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is unknown: (1) to what extent Mo and U enrichment factors (Mo- and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary [...]".
Source: Science Direct
Authors: K. Mareike Paul et al.
DOI: https://doi.org/10.1016/j.chemgeo.2022.121203
Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea
Abstract.
"The wind wake effect of offshore wind farms affects the hydrodynamical conditions in the ocean, which has been hypothesized to impact marine primary production. So far only little is known about the ecosystem response to wind wakes under the premisses of large offshore wind farm clusters. Here we show, via numerical modeling, that the associated wind wakes in the North Sea provoke large-scale changes in annual primary production with local changes of up to ±10% not only at the offshore wind farm clusters, but also distributed over a wider region. [...]".
Source: Nature
Authors: Ute Daewel et al.
DOI: https://doi.org/10.1038/s43247-022-00625-0
Recovery from microplastic-induced marine deoxygenation may take centuries
Abstract.
"Climate change and plastics pollution are dual threats to marine environments. Here we use biogeochemical and microplastic modelling to show that even if there is complete removal of microplastics and cessation of deposition in the oceans in 2022, regional recovery from microplastic-induced remineralization and water column deoxygenation could take hundreds of years for coastal upwelling zones, the North Pacific and Southern Ocean. [...]".
Source: Nature
Authors: Karin Kvale & Andreas Oschlies
DOI: https://doi.org/10.1038/s41561-022-01096-w
Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World
Abstract.
"Global ocean oxygen loss is projected to persist in the future, but Earth system models (ESMs) have not yet provided a consistent picture of how it will influence the largest oxygen minimum zone (OMZ) in the tropical Pacific. We examine the change in the Pacific OMZ volume in an ensemble of ESMs from the CMIP6 archive, considering a broad range of oxygen (O2) thresholds relevant to biogeochemical cycles and ecosystems (5–160 µmol/kg). Despite OMZ biases in the historical period of the simulations, the ESM ensemble projections consistently fall into three regimes across ESMs […]".
Source: Wiley Online Library
Authors: Julius J.M. Busecke et al.
DOI: https://doi.org/10.1029/2021AV000470
Oxygen and irradiance constraints on visual habitat in a changing ocean: The luminoxyscape
Abstract.
"Changing oxygen conditions are altering the distribution of many marine animals. Zooplankton vertical distributions are primarily attributed to physiological tolerance and/or avoidance of visual predation. Recent findings reveal that visual function in marine larvae is highly sensitive to oxygen availability, but it is unknown how oxygen, which affects light sensitivity and generates limits for vision, may affect the distribution of animals that rely heavily on this sensory modality. This study introduces the concept of a “visual luminoxyscape” to demonstrate how combinations of limiting oxygen and light could constrain the habitat of marine larvae with oxygen-demanding vision. [...]".
Source: Wiley Online Library
Authors: Lillian R. McCormick et al.
DOI: https://doi.org/10.1002/lol2.10296
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.