News
Disparity between Toarcian Oceanic Anoxic Event and Toarcian carbon isotope excursion
Abstract.
"The Toarcian Oceanic Anoxic Event (T-OAE, Early Jurassic) is marked by widespread marine deoxygenation and deposition of organic carbon (OC)-rich strata. The genesis of the T-OAE is thought to be associated with environmental changes caused by the emission of 12C-enriched greenhouse gasses (CO2, CH4), manifested in a negative Toarcian carbon isotope excursion (nT-CIE). The nT-CIE is commonly used to stratigraphically define the T-OAE, and despite the complex interrelationship of the different environmental phenomena, both terms (nT-CIE and T-OAE) are commonly used interchangeable. [...]".
Source: Springer Nature
Authors: Wolfgang Ruebsam & Lorenz Schwark
DOI: https://doi.org/10.1007/s00531-024-02408-8
The past to unravel the future: Deoxygenation events in the geological archive and the anthropocene oxygen crisis
Abstract.
"Despite the observation that we are witnessing a true oxygen crisis, the ocean deoxygenation theme is getting less attention from the media and population compared to other environmental stressors concerning climate change. The current ocean oxygen crisis is characterized by a complex interplay of climatic, biological, and oceanographic processes acting at different time scales. Earth system models offer insights into future deoxygenation events and their potential extent [...]".
Source: Science Direct
Authors: Alan Maria Mancini et al.
DOI: https://doi.org/10.1016/j.earscirev.2023.104664
Microscale dynamics promote segregated denitrification in diatom aggregates sinking slowly in bulk oxygenated seawater
Abstract.
"Sinking marine particles drive the biological pump that naturally sequesters carbon from the atmosphere. Despite their small size, the compartmentalized nature of particles promotes intense localized metabolic activity by their bacterial colonizers. Yet the mechanisms promoting the onset of denitrification, a metabolism that arises once oxygen is limiting, remain to be established. Here we show experimentally that slow sinking aggregates composed of marine diatoms—important primary producers for global carbon export—support active denitrification even among bulk oxygenated water typically thought to exclude anaerobic metabolisms. [...]".
Source: Nature
Authors: Davide Ciccarese et al.
DOI: https://doi.org/10.1038/s43247-023-00935-x
Oxygenation of the Earth aided by mineral–organic carbon preservation
Abstract.
"Photosynthesis produces molecular oxygen, but it is the burial of organic carbon in sediments that has allowed this O2 to accumulate in Earth’s atmosphere. Yet many direct controls on the preservation and burial of organic carbon have not been explored in detail. For modern Earth, it is known that reactive iron phases are important for organic carbon preservation, suggesting that the availability of particulate iron could be an important factor for the oxygenation of the oceans and atmosphere over Earth history. Here we develop a theoretical model to investigate the effect of mineral–organic preservation on the oxygenation of the Earth, supported by a proxy [...]".
Source: Nature
Authors: Mingyu Zhao et al.
DOI: https://doi.org/10.1038/s41561-023-01133-2
Early detection of anthropogenic climate change signals in the ocean interior
Abstract.
"Robust detection of anthropogenic climate change is crucial to: (i) improve our understanding of Earth system responses to external forcing, (ii) reduce uncertainty in future climate projections, and (iii) develop efficient mitigation and adaptation plans. Here, we use Earth system model projections to establish the detection timescales of anthropogenic signals in the global ocean through analyzing temperature, salinity, oxygen, and pH evolution from surface to 2000 m depths. For most variables, anthropogenic changes emerge earlier in the interior ocean than at the surface, due to the lower background variability at depth. [...]".
Source: Nature
Authors: Jerry F. Tjiputra et al.
DOI: https://doi.org/10.1038/s41598-023-30159-0
Arctic deep-water anoxia and its potential role for ocean carbon sink during glacial periods
Abstract.
"Deep water freshening beneath pan-Arctic ice shelves has recently been proposed based on the absence of excess thorium in glacial Arctic sediments. This profound proposal requires scrutiny of Arctic paleohydrology during past glacial periods. Here, we present structural and geochemical results of inorganic authigenic carbonates in deep-sea glacimarine sediments from the Mendeleev Ridge, western Arctic Ocean over the last 76 kyr. Our results suggest that Polar Deep Water in the western Arctic became brackish and anoxic during stadial periods. We argue that sediment-laden hyperpycnal meltwater discharged from paleo-ice sheets filled much of the water column [...]".
Source: Nature
Authors: Kwangchul Jang et al.
DOI: https://doi.org/10.1038/s43247-023-00708-6
Calcium isotope ratios of malformed foraminifera reveal biocalcification stress preceded Oceanic Anoxic Event 2
Abstract.
"Ocean acidification causes biocalcification stress. The calcium isotope composition of carbonate producers can archive such stress because calcium isotope fractionation is sensitive to precipitation rate. Here, we synthesize morphometric observations of planktic foraminifera with multi-archive calcium isotope records from Gubbio, Italy and the Western Interior Seaway spanning Cretaceous Ocean Anoxic Event 2 (~94 million years ago). Calcium isotope ratios increase ~60 thousand years prior to the event. [...]".
Source: Nature
Authors: Gabriella D. Kitch et al.
DOI: https://doi.org/10.1038/s43247-022-00641-0
The Ocean's Biological Pump: In Situ Oxygen Measurements in the Subtropical Oceans
Abstract.
"The magnitude and distribution of the ocean's biological pump (the downward flux of organic carbon (OC) from the ocean surface) influences the pCO2 of the atmosphere and the O2 content of the deep sea, but has not been well quantified. We determine this flux in the ocean's five subtropical gyres using upper-ocean oxygen mass balance and measurements of T, S, and pO2 by autonomous profiling floats. Our results suggest that the biological OC pump is not globally uniform among the subtropical gyres: values in the North Pacific and Atlantic indicate distinct autotrophy (1–2 mol C m−2 yr−1) while near zero values in the S. [...]".
Source: Geophysical Research Letters
Authors: Steven Emerson & Bo Yang
DOI: https://doi.org/10.1029/2022GL099834
Intensive peatland wildfires during the Aptian–Albian oceanic anoxic event 1b: Evidence from borehole SK-2 in the Songliao Basin, NE China
Abstract.
"The Cretaceous has been considered a “high-fire” world accompanied by widespread by-products of combustion in the rock record. The mid-Cretaceous oceanic anoxic event 1b (OAE1b) is marked by one of the major perturbations in the global carbon cycle characterized by deposition of organic-rich sediments in both marine and terrestrial settings. However, our understanding is still limited on changes in wildfire activity during OAE1b period. [...]".
Source: Science Direct
Authors: Zhi-Hui Zhang et al.
DOI: https://doi.org/10.1016/j.jop.2022.06.002
Competing and accelerating effects of anthropogenic nutrient inputs on climate-driven changes in ocean carbon and oxygen cycles
Abstract.
"Nutrient inputs from the atmosphere and rivers to the ocean are increased substantially by human activities. However, the effects of increased nutrient inputs are not included in the widely used CMIP5 Earth system models, which introduce bias into model simulations of ocean biogeochemistry. Here, using historical simulations by an Earth system model with perturbed atmospheric and riverine nutrient inputs, we show that the contribution of anthropogenic nutrient inputs to past global changes in ocean biogeochemistry is of similar magnitude to the effect of climate change. [...]".
Source: Science Advances
Authors: Akitomo Yamamoto et al.
DOI: 10.1126/sciadv.abl9207
Reconstructing the Preindustrial Coastal Carbon Cycle Through a Global Ocean Circulation Model: Was the Global Continental Shelf Already Both Autotrop
Abstract.
"The contribution of continental shelves to the marine carbon cycle is still poorly understood. Their preindustrial state is, for one, essentially unknown, which strongly limits the quantitative assessment of their anthropogenic perturbation. To date, approaches developed to investigate and quantify carbon fluxes on continental shelves have strongly simplified their physical and biogeochemical features. In this study, we enhance the global ocean biogeochemistry model HAMburg Ocean Carbon Cycle by[...]"
Source: AGU- Advancing Earth and Space Science
Authors: Fabrice Lacroix et al.
DOI: https://doi.org/10.1029/2020GB006603
Toward a better understanding of fish-based contribution to ocean carbon flux
Abstract.
"Fishes are the dominant vertebrates in the ocean, yet we know little of their contribution to carbon export flux at regional to global scales. We synthesize the existing information on fish-based carbon flux in coastal and pelagic waters, identify gaps and challenges in measuring this flux and approaches to address them, and recommend research priorities. Based on our synthesis of passive (fecal pellet sinking) and active.[...]".
Source: ASLO- Association for the Sciences of Limnology and Oceanography
Authors: Grace K. Saba et al.
DOI: https://doi.org/10.1002/lno.11709
Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification
Abstract.
"Ocean acidification (OA) will affect marine biotas from the organism to the ecosystem level. Yet, the consequences for the biological carbon pump and thereby the oceanic sink for atmospheric CO2 are still unclear. Here we show that OA considerably alters the C/N ratio of organic-matter export (C/Nexport), a key factor determining efficiency of the biological pump. By synthesizing sediment-trap data from in situ mesocosm studies in different marine biomes[...]
Source: Nature Climate Change
Authors: Jan Taucher et al.
DOI:https://doi.org/10.1038/s41558-020-00915-5
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Abstract.
"Temperature is a master parameter in the marine carbon cycle, exerting a critical control on the rate of biological transformation of a variety of solid and dissolved reactants and substrates. Although in the construction of numerical models of marine carbon cycling, temperature has been long recognised as a key parameter in the production and export of organic matter at the ocean surface, its role in the ocean interior is much less frequently accounted for. There, bacteria (primarily) transform sinking particulate organic matter (POM) into its dissolved constituents and consume dissolved oxygen (and/or other electron acceptors such as sulfate). The nutrients and carbon[...]"
Source: EGU- European Geosciences Union
Authors: Katherine A. Crichton
DOI: https://doi.org/10.5194/gmd-14-125-2021
Triple Oxygen Isotopes in Silica–Water and Carbonate–Water Systems
Abstract.
"The field of stable isotope geochemistry began with the recognition that the oxygen isotope composition of ancient carbonates could be used as a paleothermometer (Urey 1947; Urey et al. 1951). As stated by Urey (1947), “Accurate determinations of the Ol8 content of carbonate rocks could be used to determine the temperature at which they were formed”. This concept was based on the temperature dependence for the oxygen isotope fractionation between calcite and water. Urey realized that if a mass spectrometer with sufficient precision could be built, a method of reproducibly extracting oxygen from[...]"
Source: Reviews in Mineralogy and Geochemistry
Authors: Jordan A.G. Wostbrock et al.
DOI: https://doi.org/10.2138/rmg.2021.86.11
Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium
Abstract.
"Deep ocean deoxygenation inferred from proxies has been used to support the hypothesis that a lower atmospheric carbon dioxide during glacial times was due to an increase in the strength of the ocean’s biological pump. This relies on the assumption that surface ocean oxygen (O2) is equilibrated with the atmosphere such that any O2 deficiency observed in deep waters is a result of organic matter respiration, which consumes O2 and produces dissolved inorganic carbon. However, this assumption has been shown to be imperfect because of disequilibrium. Here we used an Earth system[...]"
Source: Nature Geoscience
Authors: Ellen Cliff et al.
DOI: https://doi.org/10.1038/s41561-020-00667-z
The role of environmental factors in the long-term evolution of the marine biological pump
Abstract.
"The biological pump—the transfer of atmospheric carbon dioxide to the ocean interior and marine sediments as organic carbon—plays a critical role in regulating the long-term carbon cycle, atmospheric composition and climate. Despite its centrality in the Earth system, the response of the biological pump to biotic innovation and climatic fluctuations through most stages of Earth’s history has been largely conjectural. Here we use a mechanistic model of the biological carbon pump to revisit the factors controlling the transfer efficiency of carbon from surface waters to the ocean interior and marine sediments[...]".
Source: Nature Geoscience
Authours: Mojtaba Fakhraee et al.
DOI: https://doi.org/10.1038/s41561-020-00660-6
Glacial heterogeneity in Southern Ocean carbon storage abated by fast South Indian deglacial carbon release
Abstract.
"Past changes in ocean 14C disequilibria have been suggested to reflect the Southern Ocean control on global exogenic carbon cycling. Yet, the volumetric extent of the glacial carbon pool and the deglacial mechanisms contributing to release remineralized carbon, particularly from regions with enhanced mixing today, remain insufficiently constrained. Here, we reconstruct the deglacial ventilation history of the South Indian upwelling hotspot near Kerguelen Island, using high-resolution 14C-dating of smaller-than-conventional foraminiferal samples and multi-proxy deep-ocean oxygen[...]"
Source: Nature Communications
Authors: Julia Gottschalk et al.
DOI: https://doi.org/10.1038/s41467-020-20034-1
Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations
Abstract.
"The Permian/Triassic boundary approximately 251.9 million years ago marked the most severe environmental crisis identified in the geological record, which dictated the onwards course for the evolution of life. Magmatism from Siberian Traps is thought to have played an important role, but the causational trigger and its feedbacks are yet to be fully understood. Here we present a new boron-isotope-derived seawater pH record from fossil brachiopod shells deposited on the Tethys shelf that demonstrates a substantial decline in seawater pH coeval with the onset of the mass extinction in the latest Permian. Combined with carbon isotope data, our results are integrated in a geochemical model that resolves the carbon cycle dynamics as well as the ocean redox conditions[...]"
Source: Nature Geoscience
Authors: Hana Jurikova et al.
DOI: https://doi.org/10.1038/s41561-020-00646-4
Heat and carbon coupling reveals ocean warming due to circulation changes
Abstract.
Anthropogenic global surface warming is proportional to cumulative carbon emissions1,2,3; this relationship is partly determined by the uptake and storage of heat and carbon by the ocean4. The rates and patterns of ocean heat and carbon storage are influenced by ocean transport, such as mixing and large-scale circulation5,6,7,8,9,10. However, existing climate models do not accurately capture the observed patterns of ocean warming, with a large spread in their projections of ocean circulation and ocean heat uptake8,11. Additionally, assessing the influence of ocean circulation changes (specifically, the redistribution of heat by resolved advection) on patterns[...]"
Source: Nature
Authors: Ben Bronselaer et al.
DOI: https://doi.org/10.1038/s41586-020-2573-5
An ice–climate oscillatory framework for Dansgaard–Oeschger cycles
Abstract.
"Intermediate glacial states were characterized by large temperature changes in Greenland and the North Atlantic, referred to as Dansgaard–Oeschger (D–O) variability, with some transitions occurring over a few decades. D–O variability included changes in the strength of the Atlantic meridional overturning circulation (AMOC), temperature changes of opposite sign and asynchronous timing in each hemisphere, shifts in the mean position of the Intertropical Convergence Zone and variations in atmospheric CO2[...]"
Source: Nature Reviews Earth and Environment
Authors: Laurie C. Menviel et al.
DOI: https://doi.org/10.1038/s43017-020-00106-y
Organic Carbon Export and Loss Rates in the Red Sea
Abstract.
"The export and fate of organic carbon in the mesopelagic zone are still poorly understood and quantified due to lack of observations. We exploited data from a biogeochemical‐Argo float that was deployed in the Red Sea to study how a warm and hypoxic environment can affect the fate of the organic carbon in the ocean's interior. We observed that only 10% of the particulate organic carbon (POC) exported survived at depth due to remineralization processes[...]"
Source: Global Biogeochemical Cycles
Authors: Malika Kheireddine et al.
DOI: https://doi.org/10.1029/2020GB006650
The role of calcium in regulating marine phosphorus burial and atmospheric oxygen
Abstract.
"The marine phosphorus cycle plays a critical role in controlling the extent of global primary productivity and thus atmospheric pO2 on geologic time scales. However, previous attempts to model carbon–phosphorus-oxygen feedbacks have neglected key parameters that could shape the global P cycle. Here we present new diagenetic models to fully parameterize marine P burial. We have also coupled this diagenetic framework to a global carbon cycle model. We find that seawater calcium concentration, by strongly influencing carbonate fluorapatite (CFA) formation, is a key factor controlling global phosphorus cycling, and therefore plays[...]"
Source: Nature Communications
Authors: Mingyu Zhao et al.
DOI: https://doi.org/10.1038/s41467-020-15673-3
Ocean Carbon Uptake Under Aggressive Emission Mitigation
Abstract.
"Nearly every nation has signed the UNFCC Paris Agreement, committing to mitigate global anthropogenic carbon (Cant) emissions and limit global mean temperature increase to 1.5 °C. A consequence of emission mitigation is reduced efficiency of ocean Cant uptake, which is driven by mechanisms that have not been studied in detail. The historical pattern of continual increase in atmospheric CO2 has resulted in a proportional increase in Cant uptake. [...]"
Source: Biogeosciences
Authors: Sean Ridge and Galen McKinley
DOI: 10.5194/bg-2020-254
Autotrophic Carbon Fixation Pathways Along the Redox Gradient in Oxygen‐Depleted Oceanic Waters
Abstract.
"Anoxic marine zones (AMZs), also known as ‘oxygen‐deficient zones’, contribute to the loss of fixed nitrogen from the ocean by anaerobic microbial processes. While these microbial processes associated with the nitrogen cycle have been extensively studied, those linked to the carbon cycle in AMZs have received much less attention, particularly the autotrophic carbon fixation —a crucial component of the carbon cycle. [...]"
Source: Environmental Microbiology Reports
Authors: Paula Ruiz‐Fernández et al.
DOI: 10.1111/1758-2229.12837
Millennial-scale variations in sedimentary oxygenation in the western subtropical North Pacific and its links to North Atlantic climate
Abstract.
"The deep-ocean carbon cycle, especially carbon sequestration and outgassing, is one of the mechanisms to explain variations in atmospheric CO2 concentrations on millennial and orbital timescales. However, the potential role of subtropical North Pacific subsurface waters in modulating atmospheric CO2 levels on millennial timescales is poorly constrained. An increase in the respired CO2 concentration in the glacial deep-ocean due to biological pump generally corresponds to deoxygenation in the ocean interior. [...]"
Source: Climate of the Past
Authors: Jianjun Zou et al.
DOI: 10.5194/cp-16-387-2020
Implications of different nitrogen input sources for potential production and carbon flux estimates in the coastal Gulf of Mexico (GOM)
and Korean Peninsula coastal waters
Abstract.
"The coastal Gulf of Mexico (GOM) and coastal sea off the Korean Peninsula (CSK) both suffer from human-induced eutrophication. We used a nitrogen (N) mass balance model in two different regions with different nitrogen input sources to estimate organic carbon fluxes and predict future carbon fluxes under different model scenarios. The coastal GOM receives nitrogen predominantly from the Mississippi and Atchafalaya rivers and atmospheric nitrogen deposition is only a minor component in this region. [...]"
Source: Ocean Science
Authors: Jongsun Kim et al.
DOI: 10.5194/os-16-45-2020
Oceanic organic carbon as a possible first-order control on the carbon cycle during the Bathonian–Callovian
Abstract.
"Oceans are the largest, readily exchangeable, superficial carbon reservoir; a current challenge in investigating past and present environments and predict future evolution relates to the role of oceanic carbon in regulating Earths' carbon cycle and climate. At least one paired δ13Ccarb-TOC decoupling event is noted in the Late Bathonian–Early Callovian. [...]"
Source: Global and Planetary Change
Authors: Ricardo L.Silva et al.
DOI: 10.1016/j.gloplacha.2019.103058
Constraining the Oceanic Uptake and Fluxes of Greenhouse Gases by Building an Ocean Network of Certified Stations:
The Ocean Component of the Integrated Carbon Observation System, ICOS-Oceans
Abstract.
"The European Research Infrastructure Consortium “Integrated Carbon Observation System” (ICOS) aims at delivering high quality greenhouse gas (GHG) observations and derived data products (e.g., regional GHG-flux maps) for constraining the GHG balance on a European level, on a sustained long-term basis. The marine domain (ICOS-Oceans) currently consists of 11 Ship of Opportunity lines (SOOP – Ship of Opportunity Program) and 10 Fixed Ocean Stations (FOSs) spread across European waters, including the North Atlantic and Arctic Oceans and the Barents, North, Baltic, and Mediterranean Seas. [...]"
Source: Frontiers in Marine Science
Authors: Tobias Steinhoff et al.
DOI: 10.3389/fmars.2019.00544
Anoxygenic photosynthesis and the delayed oxygenation of Earth’s atmosphere
Abstract.
"The emergence of oxygenic photosynthesis created a new niche with dramatic potential to transform energy flow through Earth’s biosphere. However, more primitive forms of photosynthesis that fix CO2 into biomass using electrons from reduced species like Fe(II) and H2 instead of water would have competed with Earth’s early oxygenic biosphere for essential nutrients. [...]"
Source: Nature Communications
Authors: Kazumi Ozaki et al.
DOI: 10.1038/s41467-019-10872-z
Multi-faceted particle pumps drive carbon sequestration in the ocean
Abstract.
"The ocean’s ability to sequester carbon away from the atmosphere exerts an important control on global climate. The biological pump drives carbon storage in the deep ocean and is thought to function via gravitational settling of organic particles from surface waters. However, the settling flux alone is often insufficient to balance mesopelagic carbon budgets or to meet the demands of subsurface biota. [...]"
Source: Nature
Authors: Philip W. Boyd et al.
DOI: 10.1038/s41586-019-1098-2
Organic carbon recycling in Baltic Sea sediments – An integrated estimate on the system scale based on in situ measurements
Abstract.
"In situ measured benthic fluxes of dissolved inorganic carbon (DIC), a proxy for organic carbon (OC) oxidation or recycling rates, are used together with burial rates based on measured sediment accumulation rates (SAR) and vertical distribution of OC in the sediment solid phase to construct a benthic OC budget for the Baltic Sea system. [...]"
Source: Marine Chemistry
Authors: Madeleine M. Nilsson et al.
DOI: 10.1016/j.marchem.2018.11.004
Carbon cycling in the North American coastal ocean: a synthesis
Abstract.
"A quantification of carbon fluxes in the coastal ocean and across its boundaries with the atmosphere, land, and the open ocean is important for assessing the current state and projecting future trends in ocean carbon uptake and coastal ocean acidification, but this is currently a missing component of global carbon budgeting. This synthesis reviews recent progress in characterizing these carbon fluxes for the North American coastal ocean. [...]"
Source: Biogeosciences
Authors: Katja Fennel et al.
DOI: 10.5194/bg-16-1281-2019
Phytoplankton calcifiers control nitrate cycling and the pace of transition in warming icehouse and cooling greenhouse climates
Abstract.
"Phytoplankton calcifiers contribute to global carbon cycling through their dual formation of calcium carbonate and particulate organic carbon (POC). The carbonate might provide an efficient export pathway for the associated POC to the deep ocean, reducing the particles' exposure to biological degradation in the upper ocean and increasing the particle settling rate. Previous work has suggested ballasting of POC by carbonate might increase in a warming climate, in spite of increasing carbonate dissolution rates, because calcifiers benefit from the widespread nutrient limitation arising from stratification. [...]"
Source: Biogeosciences
Authors: Karin F. Kvale et al.
DOI: 10.5194/bg-16-1019-2019
Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments
Abstract.
"Permeable (sandy) sediments cover half of the continental margin and are major regulators of oceanic carbon cycling. The microbial communities within these highly dynamic sediments frequently shift between oxic and anoxic states, and hence are less stratified than those in cohesive (muddy) sediments. A major question is, therefore, how these communities maintain metabolism during oxic–anoxic transitions. [...]"
Source: Nature Microbiology
Authors: Adam J. Kessler et al.
DOI: 10.1038/s41564-019-0391-z
Evolving paradigms in biological carbon cycling in the ocean
Abstract.
"Carbon is a keystone element in global biogeochemical cycles. It plays a fundamental role in biotic and abiotic processes in the ocean, which intertwine to mediate the chemistry and redox status of carbon in the ocean and the atmosphere. The interactions between abiotic and biogenic carbon (e.g. CO2, CaCO3, organic matter) in the ocean are complex, and there is a half-century-old enigma about the existence of a huge reservoir of recalcitrant dissolved organic carbon (RDOC) that equates to the magnitude of the pool of atmospheric CO2. The concepts of the biological carbon pump (BCP) and the microbial loop (ML) shaped our understanding of the marine carbon cycle. [...]"
Source: National Science Review
Authors: Chuanlun Zhang et al.
DOI: 10.1093/nsr/nwy074
Earth's oxygen increased in gradual steps rather than big bursts
"A carbon cycle anomaly discovered in carbonate rocks of the Neoproterozoic Hüttenberg Formation of north-eastern Namibia follows a pattern similar to that found right after the Great Oxygenation Event, hinting at new evidence for how Earth's atmosphere became fully oxygenated.
By using the Hüttenberg Formation, which formed between a billion and half a billion years ago, to study the time between Earth's change from an anoxic environment (i.e. one lacking oxygen) to a more hospitable environment that heralded the animal kingdom, a team of researchers led by Dr. Huan Cui of the NASA Astrobiology Institute at the University of Wisconsin–Madison discovered a sustained, high level of carbon. This influx of carbon, coupled with changes in other elements, indicates how changing levels of oceanic oxygen may have lent a helping hand to early animal evolution. [...]"
Source: Phys.org
The devil's in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings...
...in a general circulation model
Abstract.
"The complexity of dissolved gas cycling in the ocean presents a challenge for mechanistic understanding and can hinder model intercomparison. One helpful approach is the conceptualization of dissolved gases as the sum of multiple, strictly defined components. Here we decompose dissolved inorganic carbon (DIC) into four components: saturation (DICsat), disequilibrium (DICdis), carbonate (DICcarb), and soft tissue (DICsoft). The cycling of dissolved oxygen is simpler, but can still be aided by considering O2, O2sat, and O2dis. [...]"
Source: Biogeosciences
Authors: Sarah Eggleston and Eric D. Galbraith
DOI: 10.5194/bg-15-3761-2018
Tiny microenvironments in the ocean hold clues to global nitrogen cycle
"Nitrogen is essential to marine life and cycles throughout the ocean in a delicately balanced system. Living organisms--especially marine plants called phytoplankton--require nitrogen in processes such as photosynthesis. In turn, phytoplankton growth takes up carbon dioxide from the atmosphere and helps regulate global climate. [...]"
Source: EruekAlert
Coccolithovirus facilitation of carbon export in the North Atlantic
Abstract.
"Marine phytoplankton account for approximately half of global primary productivity, making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon, which can stimulate nutrient regeneration, primary production and upper ocean respiration2 via lytic infection and the ‘virus shunt’. [...]"
Source: Nature Microbiology
Authors: Christien P. Laber
DOI: 10.1038/s41564-018-0128-4
The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model
Abstract.
"During the four most recent glacial cycles, atmospheric CO2 during glacial maxima has been lowered by about 90–100 ppm with respect to interglacials. There is widespread consensus that most of this carbon was partitioned in the ocean. It is, however, still debated which processes were dominant in achieving this increased carbon storage. In this paper, we use an Earth system model of intermediate complexity to explore the sensitivity of ocean carbon storage to ocean circulation state. We carry out a set of simulations in which we run the model to pre-industrial equilibrium, but in which we achieve different states of ocean circulation by changing forcing parameters such as wind stress, ocean diffusivity and atmospheric heat diffusivity. [...]"
Source: Biogeosciences
Authors: Malin Ödalen et al.
DOI: 10.5194/bg-15-1367-2018
Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean
Abtract.
"Recently, measurements of oxygen concentration in the ocean—one of the most classical parameters in chemical oceanography—are experiencing a revival. This is not surprising, given the key role of oxygen for assessing the status of the marine carbon cycle and feeling the pulse of the biological pump. The revival, however, has to a large extent been driven by the availability of robust optical oxygen sensors and their painstakingly thorough characterization. For autonomous observations, oxygen optodes are the sensors of choice: They are used abundantly on Biogeochemical-Argo floats, gliders and other autonomous oceanographic observation platforms. [...]"
Source: Frontiers in Marine Science
Authors: Henry C. Bittig et al.
DOI: 10.3389/fmars.2017.00429
Read the full article here.
Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities
Abstract.
"Atmospheric carbon dioxide (CO2) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. [...]
Source: Science Advances
Authors: R. Dietmar Müller and Adriana Dutkiewicz
DOI: 10.1126/sciadv.aaq0500
Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean
Abstract.
"Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification1, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the ‘aragonite saturation horizon’—below which waters are undersaturated with respect to a particular calcium carbonate, aragonite—to move to shallower depths (to shoal), exposing corals to corrosive waters. [...]"
Source: Nature
Authors: Fiz F. Perez et al.
DOI: 10.1038/nature25493
Carbonate chemistry of an in-situ free-ocean CO2 enrichment experiment (antFOCE) in comparison to short term variation in Antarctic coastal waters
Abstract.
"Free-ocean CO2 enrichment (FOCE) experiments have been deployed in marine ecosystems to manipulate carbonate system conditions to those predicted in future oceans. We investigated whether the pH/carbonate chemistry of extremely cold polar waters can be manipulated in an ecologically relevant way, to represent conditions under future atmospheric CO2 levels, in an in-situ FOCE experiment in Antarctica. [...]"
Source: Scientific Reports
Authors: J. S. Stark et al.
DOI: 10.1038/s41598-018-21029-1
Read the full article here.
Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations
Abstract.
"Global change has been acknowledged as one of the main threats to the biosphere and its provision of ecosystem services, especially in marine ecosystems. Seagrasses play a critical ecological role in coastal ecosystems, but their responses to ocean acidification (OA) and climate change are not well understood. There have been previous studies focused on the effects of OA, but the outcome of interactions with co-factors predicted to alter during climate change still needs to be addressed. [...]"
Source: PLoS ONE
Authors: Luis G. Egea et al.
DOI: 10.1371/journal.pone.0192402
On the effect of low oxygen concentrations on bacterial degradation of sinking particles
Abstract.
"In marine oxygen (O2) minimum zones (OMZs), the transfer of particulate organic carbon (POC) to depth via the biological carbon pump might be enhanced as a result of slower remineralisation under lower dissolved O2 concentrations (DO). In parallel, nitrogen (N) loss to the atmosphere through microbial processes, such as denitrification and anammox, is directly linked to particulate nitrogen (PN) export. [...]"
Source: Scientific Reports
Authors: Frédéric A. C. Le Moigne
DOI: 10.1038/s41598-017-16903-3
Repeated storage of respired carbon in the equatorial Pacific Ocean over the last three glacial cycles
Abstract.
"As the largest reservoir of carbon exchanging with the atmosphere on glacial–interglacial timescales, the deep ocean has been implicated as the likely location of carbon sequestration during Pleistocene glaciations. Despite strong theoretical underpinning for this expectation, radiocarbon data on watermass ventilation ages conflict, and proxy interpretations disagree about the depth, origin and even existence of the respired carbon pool. [...]"
Authors: A.W. Jacobel
Source: Nature Communications
DOI: 10.1038/s41467-017-01938-x
Oxygenation as a driver of the Great Ordovician Biodiversification Event
Abstract.
"The largest radiation of Phanerozoic marine animal life quadrupled genus-level diversity towards the end of the Ordovician Period about 450 million years ago. A leading hypothesis for this Great Ordovician Biodiversification Event is that cooling of the Ordovician climate lowered sea surface temperatures into the thermal tolerance window of many animal groups, such as corals. [...]"
Source: Nature Geoscience
Authors: Cole T. Edwards
DOI: 10.1038/s41561-017-0006-3
A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer
Abstract.
"The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized metagenomic libraries of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement to query microbial diversity. [...]"
Source: The ISME Journal
Authors: Benjamin J. Tully et al.
DOI: 10.1038/ismej.2017.187
Read the full article here.
A strong case for limiting climate change
"As a gigantic carbon sink, the ocean has taken up about a third of the carbon dioxide (CO2) released into the atmosphere by human activities. But when absorbed by seawater, the greenhouse gas triggers chemical reactions, causing the ocean to acidify. Ocean acidification affects ecosystems and important services the ocean provides to humankind. This includes the regulation of the Earth's climate, food provision, recreation as well as biodiversity as a condition for intact and functioning ecosystems. [...]"
Source: EurekAlert
Methane fluxes from coastal sediments are enhanced by macrofauna
Abstract.
"Methane and nitrous oxide are potent greenhouse gases (GHGs) that contribute to climate change. Coastal sediments are important GHG producers, but the contribution of macrofauna (benthic invertebrates larger than 1 mm) inhabiting them is currently unknown. Through a combination of trace gas, isotope, and molecular analyses, we studied the direct and indirect contribution of two macrofaunal groups, polychaetes and bivalves, to methane and nitrous oxide fluxes from coastal sediments. [...]"
Source: Scientific Reports
Authors: Stefano Bonaglia et al.
DOI: 10.1038/s41598-017-13263-w
Pteropods are excellent recorders of surface temperature and carbonate ion concentration
Abstract.
"Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). [...]"
Source: Scientific Reports
Authors: N. Keul et al.
DOI: 10.1038/s41598-017-11708-w
The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature
Abstract.
"Anthropogenic inputs are increasing the CO2 content of the atmosphere, and the CO2 and total inorganic C in the surface ocean and, to a lesser degree, the deep ocean. The greenhouse effect of the increased CO2 (and, to a lesser extent, other greenhouse gases) is very probably the major cause of present global warming. The warming increases temperature of the atmosphere and the surface ocean to a greater extent than the deep ocean, with shoaling of the thermocline, decreasing nutrient flux to the surface ocean where there is greater mean photosynthetic photon flux density. [...]"
Source: European Journal of Phycology
Author: John A. Raven
DOI: 10.1080/09670262.2017.1362593
Read the full article online.
Biodiversity response to natural gradients of multiple stressors on continental margins
Abstract.
"Sharp increases in atmospheric CO2 are resulting in ocean warming, acidification and deoxygenation that threaten marine organisms on continental margins and their ecological functions and resulting ecosystem services. The relative influence of these stressors on biodiversity remains unclear, as well as the threshold levels for change and when secondary stressors become important. [...]"
Source: Proceedings of the Royal Society B
Authors: Erik A. Sperling, Christina A. Frieder, Lisa A. Levin
DOI: 10.1098/rspb.2016.0637
Role of zooplankton in determining the efficiency of the biological carbon pump
Abstract.
"The efficiency of the ocean's biological carbon pump (BCPeff – here the product of particle export and transfer efficiencies) plays a key role in the air–sea partitioning of CO2. Despite its importance in the global carbon cycle, the biological processes that control BCPeff are poorly known. We investigate the potential role that zooplankton play in the biological carbon pump using both in situ observations and model output. Observed and modelled estimates of fast, slow, and total sinking fluxes are presented from three oceanic sites: the Atlantic sector of the Southern Ocean, the temperate North Atlantic, and the equatorial Pacific oxygen minimum zone (OMZ)."
Source: Biogeosciences
Authors: Emma L. Cavan et al.
DOI: 10.5194/bg-14-177-2017
Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet
Anstract.
"Aquatic habitats beneath ice masses contain active microbial ecosystems capable of cycling important greenhouse gases, such as methane (CH4). A large methane reservoir is thought to exist beneath the West Antarctic Ice Sheet, but its quantity, source and ultimate fate are poorly understood. For instance, O2 supplied by basal melting should result in conditions favourable for aerobic methane oxidation. Here we use measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica. [...]"
Source: Nature Geoscience
Authors: Alexander B. Michaud et al.
DOI: 10.1038/ngeo2992
Influence of seaway changes during the Pliocene on tropical Pacific climate in the Kiel climate model
Mean state, annual cycle, ENSO, and their interactions
Abstract.
"The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO2) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. [...]"
Source: Climate Dynamics
Authors: Zhaoyang Song, Mojib Latif, Wonsun Park, Uta Krebs-Kanzow, Birgit Schneider
DOI: 10.1007/s00382-016-3298-x
Deep-ocean dissolved organic matter reactivity along the Mediterranean Sea: does size matter?
Abstract.
"Despite of the major role ascribed to marine dissolved organic matter (DOM) in the global carbon cycle, the reactivity of this pool in the dark ocean is still poorly understood. Present hypotheses, posed within the size-reactivity continuum (SRC) and the microbial carbon pump (MCP) conceptual frameworks, need further empirical support. Here, we provide field evidence of the soundness of the SRC model. We sampled the high salinity core-of-flow of the Levantine Intermediate Water along its westward route through the entire Mediterranean Sea. At selected sites, DOM was size-fractionated in apparent high (aHMW) and low (aLMW) molecular weight fractions using an efficient ultrafiltration cell. [...]"
Source: Scientific Reports
Authors: Alba María Martínez-Pérez, Xosé Antón Álvarez-Salgado, Javier Arístegui & Mar Nieto-Cid
DOI: 10.1038/s41598-017-05941-6
Persistent spatial structuring of coastal ocean acidification in the California Current System
Abstract.
"The near-term progression of ocean acidification (OA) is projected to bring about sharp changes in the chemistry of coastal upwelling ecosystems. The distribution of OA exposure across these early-impact systems, however, is highly uncertain and limits our understanding of whether and how spatial management actions can be deployed to ameliorate future impacts. Through a novel coastal OA observing network, we have uncovered a remarkably persistent spatial mosaic in the penetration of acidified waters into ecologically-important nearshore habitats across 1,000 km of the California Current Large Marine Ecosystem. [...]"
Source: Scientific Reports
Authors: F. Chan et al.
DOI: 10.1038/s41598-017-02777-y
The geologic history of seawater pH
Abstract.
"Although pH is a fundamental property of Earth’s oceans, critical to our understanding of seawater biogeochemistry, its long-timescale geologic history is poorly constrained. We constrain seawater pH through time by accounting for the cycles of the major components of seawater. We infer an increase from early Archean pH values between ~6.5 and 7.0 and Phanerozoic values between ~7.5 and 9.0, which was caused by a gradual decrease in atmospheric pCO2 in response to solar brightening, alongside a decrease in hydrothermal exchange between seawater and the ocean crust. [...]"
Source: Science Vol. 355
Authors: I. Halevy, A. Bachan
DOI: 10.1126/science.aal4151
A significant net sink for CO2 in Tokyo Bay
Abstract.
"Most estuaries and inland waters are significant source for atmospheric CO2 because of input of terrestrial inorganic carbon and mineralization of terrestrially supplied organic carbon. In contrast to most coastal waters, some estuaries with small freshwater discharge are weak source or sometimes sink for CO2. Extensive surveys of pCO2 in Tokyo Bay showed that the overall bay acts as a strong net sink for atmospheric CO2. Although small area was a consistent source for CO2, active photosynthesis driven by nutrient loading from the land overwhelmed the CO2 budget in the bay. [...]"
Source: Scientific Reports Vol. 7
Authors: Atsushi Kubo, Yosaku Maeda & Jota Kanda
DOI: 10.1038/srep44355
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.