News

Global oceanic anoxia linked with the Capitanian (Middle Permian) marine mass extinction

Abstract. 

"The timing and causation of the Capitanian (late Middle Permian) biocrisis remain controversial. Here, a detailed uranium-isotopic (δ238U) profile was generated for the mid-Capitanian to lower Wuchiapingian of the Penglaitan section (the Guadalupian/Lopingian Permian global stratotype) in South China for the purpose of investigating relationships between the biocrisis and coeval oceanic anoxic events (OAEs). Negative δ238U excursions indicate two distinct OAEs, a mid-Capitanian (OAE-C1) and an end-Capitanian (OAE-C2) event. [...]".

 

Source: Science Direct
Authors: Huyue Song et al.
DOI: https://doi.org/10.1016/j.epsl.2023.118128

Read the full article here.


Basin-scale reconstruction of euxinia and Late Devonian mass extinctions

Abstract. 

"The Devonian–Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean–atmosphere oxidation states, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering, glacioeustasy, eutrophication and anoxic expansion in epicontinental seas, and mass extinction events. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). [...]".

 

Source: Nature 
Authors: Swapan K. Sahoo et al.
DOI: https://doi.org/10.1038/s41586-023-05716-2

Read the full article here.


Constraining marine anoxia under the extremely oxygenated Permian atmosphere using uranium isotopes in calcitic brachiopods and marine carbonates

Abstract. 

"The redox chemistry change in ancient oceans has profoundly shaped the evolutionary trajectories of animals. Uranium isotopes (U) in marine carbonate sediments have widely been used to place quantitative constraints on the oxygenation state of the oceans through geological history. However, syndepositional and post-depositional diagenesis impose a positive and variable U offset in the carbonate sediments relative to contemporaneous seawater, leaving uncertainties on quantification of anoxic seafloor areas in the past. Studies from modern settings suggest that Low-Magnesium Calcite (LMC) in articulate brachiopod shells are diagenetic resistant materials that may faithfully record the U value of ancient seawater. [...]".

 

Source: Science Direct 
Authors: Wen-qian Wang et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117714

Read the full article here.


The palynology of the Toarcian Oceanic Anoxic Event at Dormettingen, southwest Germany, with emphasis on changes in vegetational dynamics

Abstract.

"The Toarcian Oceanic Anoxic Event (T-OAE; ~ 183 Ma) represents an episode of marine anoxia that lasted for several hundred thousand years. Abiotic factorscontributing to the formation of the T-OAE, such as global warming, changes in weathering intensity, or sea-level change, are associated with a marked change in carbon cycling. While these factors are well studied, detailed palynological data, including marine and terrestrial palynomorphs, is still missing. Here we present comprehensive palynological data from the sedimentologically and geochemically well constrained T-OAE section in Dormettingen (SW Germany). [...]".

 

Source: Science Direct 
Authors: Francesca Galasso et al.
DOI: https://doi.org/10.1016/j.revpalbo.2022.104701

Read the full article here.


Oceanic anoxia and extinction in the latest Ordovician

Abstract.

"The Late Ordovician (Hirnantian) mass extinction (LOME) was marked by two discrete pulses of high species turnover rates attributed to glacial cooling (LOME-1) and subsequent expansion of anoxic marine conditions (LOME-2). However, the mechanisms and extent of global marine anoxia remain controversial. In this study, we present uranium isotope (U) data from a new Ordovician-Silurian (O-S) boundary carbonate section in the Southwest China to explore the extent/duration of the global marine anoxia, and links to the LOME. [...]". 

 

Source: Science Direct 
Authors: Mu Liu et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117553

Read the full article here.


Extensive marine anoxia in the European epicontinental sea during the end-Triassic mass extinction

Abstract. 

"Warming-induced marine anoxia has been hypothesized as an environmental stressor for the end-Triassic mass extinction (ETME), but links between the spread of marine anoxia and the two phases of extinction are poorly constrained. Here, we report iron speciation and trace metal data from the Bristol Channel Basin and Larne Basin of the NW European epicontinental sea (EES), spanning the Triassic–Jurassic (T–J) transition (~ 202–200 Ma). Results show frequent development of anoxic-ferruginous conditions, interspersed with ephemeral euxinic episodes in the Bristol Channel Basin during the latest Rhaetian, whereas the contemporaneous Larne Basin remained largely oxygenated, suggesting heterogeneous redox conditions between basins. Subsequently, more persistent euxinic conditions prevailed across the T–J boundary in both basins, coinciding precisely with the second phase of the ETME. [...]". 

 

Source: Science Direct

Authors: Tianchen He et al. 

DOI: https://doi.org/10.1016/j.gloplacha.2022.103771

Read the full article here.


Shallow ocean oxygen decline during the end-Triassic mass extinction

Abstract.

"The end-Triassic mass extinction (ETME) was associated with intensified deep-water anoxia in epicontinental seas and mid-depth waters, yet the absolute oxygenation state in the shallow ocean is uncharacterized. Here we report carbonate-associated iodine data from the peritidal Mount Sparagio section (Southern Italy) that documents the ETME (~ 200 Ma) in the western Tethys. We find a sharp drop in carbonate I/(Ca + Mg) ratios across the extinction horizon and persisting into the Early Jurassic. [...]".

 

Source: Science Direct

Authors: Tianchen He et al.

DOI: https://doi.org/10.1016/j.gloplacha.2022.103770

Read the full article here. 


Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis

Abstract.

"The global Hangenberg Crisis near the Devonian-Carboniferous boundary (DCB) represents one of the major Phanerozoic mass extinction events, which shaped the roots of modern vertebrate biodiversity. Marine anoxia has been cited as the proximate kill mechanism for this event. However, the detailed timing, duration, and extent of global marine redox chemistry changes across this critical interval remain controversial because most of the studies to date only constrain changes in local or regional redox chemistry. [...]"

Source: Earth and Planetary Science Letters
Authors: Feifei Zhang et al.
DOI: 10.1016/j.epsl.2019.115976

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

Upcoming Events

« June 2023 »
4
ASLO Aquatic Sciences Meeting 2023
5
ASLO Aquatic Sciences Meeting 2023
6
ASLO Aquatic Sciences Meeting 2023
7
ASLO Aquatic Sciences Meeting 2023
8
ASLO Aquatic Sciences Meeting 2023

Go to all events