Metagenomics and metatranscriptomics reveal broadly distributed, active, novel methanotrophs in the Gulf of Mexico hypoxic zone


"The northern Gulf of Mexico (nGOM) hypoxic zone is a shallow water environment where methane, a potent greenhouse gas, fluxes from sediments to bottom water and remains trapped due to summertime stratification. When the water column is destratified, an active planktonic methanotrophic community could mitigate the efflux of methane, which accumulates to high concentrations, to the atmosphere. To investigate the possibility of such a biofilter in the nGOM hypoxic zone we performed metagenome assembly, and metagenomic and metatranscriptomic read mapping. Methane monooxygenase (pmoA) was an abundant [...]".


Source: Oxford Academic
Authors: Kathryn L. Howe et al.

Read the full article here.

Gulf of Mexico blue hole harbors high levels of novel microbial lineages


"Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole’s rim[...]"


Source: The ISME Journal 
Authors: N. V. Patin et al.

Read the full article here.

Can ocean community production and respiration be determined by measuring high-frequency oxygen profiles from autonomous floats?


"Oceanic primary production forms the basis of the marine food web and provides a pathway for carbon sequestration. Despite its importance, spatial and temporal variations of primary production are poorly observed, in large part because the traditional measurement techniques are laborious and require the presence of a ship. More efficient methods are emerging that take advantage of miniaturized sensors integrated into autonomous platforms such as gliders and profiling floats. One such method relies on determining the diurnal cycle of dissolved oxygen in the mixed layer and has been applied successfully to measurements from gliders and mixed-layer floats. [...]”


Source: Biogeosciences
Authors: Christopher Gordon et al.
DOI: 10.5194/bg-17-41110.5194


Read the full article here.


NOAA, partners to report on 2020 Gulf of Mexico ‘dead zone’ monitoring cruise

NOAA and its partners will report on their recent research cruise to measure the extent of the hypoxic or “dead zone” in the Gulf of Mexico during a media teleconference on Tue., Aug. 4 at 11:00 a.m. EDT.

In June, NOAA scientists forecasted this summer’s dead zone – an area of low to no oxygen that can kill fish and other marine life – to be approximately 6,700 square miles. That is larger than the long-term average measured size of 5,387 square miles, but substantially less than the record of 8,776 square miles set in 2017.


Visit the announcement here.

Larger-than-average ‘dead zone’ expected for Gulf of Mexico

"NOAA scientists are forecasting this summer’s Gulf of Mexico hypoxic area or “dead zone” – an area of low to no oxygen that can kill fish and other marine life – to be approximately 6,700 square miles, larger than the long-term average measured size of 5,387 square miles but substantially less than the record of 8,776 square miles set in 2017. The annual prediction is based on U.S. Geological Survey river-flow and nutrient data. [...]"

Source: NOAA

Read the full article here.

Effects of spatial variability on the exposure of fish to hypoxia: a modeling analysis for the Gulf of Mexico


"The hypoxic zone in the northern Gulf of Mexico varies spatially (area, location) and temporally (onset, duration) on multiple scales. Exposure to hypoxic dissolved oxygen (DO) concentrations (< 2 mg L−1) is often lethal and exposure to 2 to 4 mg L−1 often causes the sublethal effects of decreased growth and fecundity on individuals of many fish species. We simulated the movement of individual fish within a high-resolution 3-D coupled hydrodynamic-water quality model (FVCOM-WASP) configured for the northern Gulf of Mexico to examine how spatial variability in DO concentrations would affect fish exposure to hypoxic and sublethal DO concentrations. [...]"

Source: Biogeosciences
Authors: Elizabeth D. LaBone et al.
DOI: 10.5194/bg-2020-51

Read the full article here.

Implications of different nitrogen input sources for potential production and carbon flux estimates in the coastal Gulf of Mexico (GOM)

and Korean Peninsula coastal waters


"The coastal Gulf of Mexico (GOM) and coastal sea off the Korean Peninsula (CSK) both suffer from human-induced eutrophication. We used a nitrogen (N) mass balance model in two different regions with different nitrogen input sources to estimate organic carbon fluxes and predict future carbon fluxes under different model scenarios. The coastal GOM receives nitrogen predominantly from the Mississippi and Atchafalaya rivers and atmospheric nitrogen deposition is only a minor component in this region. [...]"

Source: Ocean Science
Authors: Jongsun Kim et al.
DOI: 10.5194/os-16-45-2020

Read the full article here.

Fish Diet Shifts Associated with the Northern Gulf of Mexico Hypoxic Zone


"The occurrence of low dissolved oxygen (hypoxia) in coastal waters may alter trophic interactions within the water column. This study identified a threshold at which hypoxia in the northern Gulf of Mexico (NGOMEX) alters composition of fish catch and diet composition (stomach contents) of fishes using fish trawl data from summers 2006–2008. Hypoxia in the NGOMEX impacted fish catch per unit effort (CPUE) and diet below dissolved oxygen thresholds of 1.15 mg L−1 (for fish CPUE) and 1.71 mg L−1 (for diet). CPUE of many fish species was lower at hypoxic sites (≤ 1.15 mg L −1) as compared to normoxic regions (> 1.15 mg L −1), including the key recreational or commercial fish species Atlantic croaker Micropogonias undulatus and red snapper Lutjanus campechanus. [...]"

Source: Estuaries and Coasts
Authors: Cassandra N. Glaspie et al.
DOI: 10.1007/s12237-019-00626-x

Read the full article here.

Larval Fish Habitats and Deoxygenation in the Northern Limit of the Oxygen Minimum Zone off Mexico


"The present state of deoxygenation in the northern limits of the shallow oxygen minimum zone off Mexico is examined in order to detect its effects on larval fish habitats and consider the sensitivity of fish larvae to decreased dissolved oxygen. A series of cruises between 2000 and 2017 indicated a significant vertical expansion of low oxygen waters. The upper limit of suboxic conditions (<4.4 μmol/kg) has risen ~100 m at 19.5°N off Cabo Corrientes and ~50 m at 25°N in the mouth of the Gulf of California. The larval habitat distribution was related to the geographic variability of dissolved oxygen and water masses between these two latitudes. [...]"

Source: JGR Oceans
Authors: Laura Sánchez‐Velasco et al.
DOI: 10.1029/2019JC015414

Read the full article here.

Coral Mortality Event in the Flower Garden Banks of the Gulf of Mexico in July 2016: Local Hypoxia due to Cross-Shelf Transport of Coastal Flood Water


"Remotely sensed and in situ data, in tandem with numerical modeling, are used to explore the causes of an episode of localized but severe mortality of corals, sponges, and other invertebrates at the Flower Garden Banks (FGB) National Marine Sanctuary in July 2016. [...]"

Source: Continental Shelf Research
Authors: Matthieu Le Hénaff et al.
DOI: 10.1016/j.csr.2019.103988

Read the full article here.

Showing 1 - 10 of 38 results.
Items per Page 10
of 4


It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.

To follow GOOD on Twitter, please visit here.

To follow GOOD on Blue Sky, please visit here

Upcoming Events

« June 2024 »
Global Ocean Oxygen Network on World Ocean Day 2024
GO2NE Webinar on Ocean Deoxygenation

Go to all events