News

Enhanced ocean deoxygenation in the Bering Sea during MIS 11c

Abstract.

"Accelerated Arctic warming has raised concerns about future environmental conditions in the Bering Sea, one of the world's most productive marine ecosystems. Marine Isotope Stage (MIS) 11 (424–374 ka), a period with orbital parameters similar to those of the current interglacial (Holocene), is thought to be a suitable analog to predict future marine environments. Here, we reconstruct paleoredox changes in the Bering Sea over the last 800 kyr using high-resolution U/Th ratios from four sites, which were sampled by the Integrated Ocean Drilling Program (IODP) Expedition 323. [...]".

 

Source: Science Direct
Authors: Xuguang Feng et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111982

Read the full article here.


Climate, Oxygen, and the Future of Marine Biodiversity

Abstract.

"The ocean enabled the diversification of life on Earth by adding O2 to the atmosphere, yet marine species remain most subject to O2 limitation. Human industrialization is intensifying the aerobic challenges to marine ecosystems by depleting the ocean's O2 inventory through the global addition of heat and local addition of nutrients. Historical observations reveal an ∼2% decline in upper-ocean O2 and accelerating reports of coastal mass mortality events. The dynamic balance of O2 supply and demand provides a unifying framework for understanding these phenomena across scales from the global ocean to individual organisms. [...]".

 

Source: Annual Review of Marine Science
Authors: Curtis Deutsch et al.
DOI: https://doi.org/10.1146/annurev-marine-040323-095231

Read the full article here.


Divergent responses of the coral holobiont to deoxygenation and prior environmental stress

Abstract.

"Ocean deoxygenation is intensifying globally due to human activities – and is emerging as a grave threat to coral reef ecosystems where it can cause coral bleaching and mass mortality. However, deoxygenation is one of many threats to coral reefs, making it essential to understand how prior environmental stress may influence responses to deoxygenation. To address this question, we examined responses of the coral holobiont (i.e., the coral host, Symbiodiniaceae, and the microbiome) to deoxygenation in corals with different environmental stress backgrounds. [...]".

 

Source: Frontiers in Marine Science
Authors: Sara D. Swaminathan et al.
DOI: https://doi.org/10.3389/fmars.2023.1301474

Read the full article here.


The past to unravel the future: Deoxygenation events in the geological archive and the anthropocene oxygen crisis

Abstract.

"Despite the observation that we are witnessing a true oxygen crisis, the ocean deoxygenation theme is getting less attention from the media and population compared to other environmental stressors concerning climate change. The current ocean oxygen crisis is characterized by a complex interplay of climatic, biological, and oceanographic processes acting at different time scales. Earth system models offer insights into future deoxygenation events and their potential extent [...]".

 

Source: Science Direct
Authors: Alan Maria Mancini et al.
DOI: https://doi.org/10.1016/j.earscirev.2023.104664

Read the full article here.


Interactive effects of ocean deoxygenation and acidification on a coastal fish Sillago japonica in early life stages

Abstract.

"Acidification and deoxygenation are major threats to ocean environments. Despite the possibilities of their co-occurrence, little is known about their interactive effects on marine organisms. The effects of low pH and low dissolved oxygen (DO) on the early life stages of the coastal fish Sillago japonica were investigated. Twenty-five experimental treatments fully crossed in five levels of pH 7.6–8.1 and DO 50–230 μmol/kg (20–100 % saturation degree) were tested, and hatching rate of the embryos and survivability of the larvae after 24 h at 25 °C were investigated. [...]".

 

Source: Science Direct 
Authors: Makiko Yorifuji et al.
DOI: https://doi.org/10.1016/j.marpolbul.2023.115896

Read the full article here.


Can green hydrogen production be used to mitigate ocean deoxygenation? A scenario from the Gulf of St. Lawrence

Abstract.

"Ocean deoxygenation and expansion and intensification of hypoxia in the ocean are a major, growing threat to marine ecosystems. Measures currently used to protect marine biodiversity (e.g., marine protected areas) are ineffective in countering this threat. Here, we highlight the example of the Gulf of St. Lawrence in eastern Canada, where oxygen loss is not only due to eutrophication (which can be mitigated by nutrient controls) but also is a consequence of ocean circulation change and warming. Climate-related loss of oxygen will be an increasingly widespread source of risk to marine biodiversity over this century. [...]".

 

Source: Springer Nature
Authors: Douglas W. R. Wallace et al.
DOI: https://doi.org/10.1007/s11027-023-10094-1

Read the full article here.


Hypoxia-tolerant zooplankton may reduce biological carbon pump efficiency in the Humboldt current system off Peru

Abstract.

"In the ocean, downward flux of particles produced in sunlit surface waters is the major component of the biological carbon pump, which sequesters atmospheric carbon dioxide and fuels deep-sea ecosystems. The efficiency of downward carbon transfer is expected to be particularly high in tropical upwelling systems where hypoxia occurring beneath the productive surface waters is thought to hamper particle consumption. However, observations of both particle feeders and carbon export in low-oxygen waters are scarce. Here, we provide evidence that hypoxia-tolerant zooplankton feed on sinking particles in the extensive Oxygen Minimum Zone (OMZ) off Peru. [...]".

 

Source: Nature
Authors: Anja Engel et al. 
DOI: https://doi.org/10.1038/s43247-023-01140-6

Read the full article here.


“Hypoxic” Silurian oceans suggest early animals thrived in a low-O2 world

Abstract.

"Atmospheric oxygen (O2) concentrations likely remained below modern levels until the Silurian–Devonian, as indicated by several recent studies. Yet, the background redox state of early Paleozoic oceans remains poorly constrained, hampering our understanding of the relationship between early animal evolution and O2. Here, we present a multi-proxy analysis of redox conditions in the Caledonian foreland basin to Baltica from the early to the mid-Silurian. [...]".

 

Source: Science Direct 
Authors: Emma R. Haxen et al.
DOI: https://doi.org/10.1016/j.epsl.2023.118416

Read the full article here.


Future change of summer hypoxia in coastal California Current

Abstract.

"The occurrences of summer hypoxia in coastal California Current can significantly affect the benthic and pelagic habitat and lead to complex ecosystem changes. Model-simulated hypoxia in this region is strongly spatially heterogeneous, and its future changes show uncertainties depending on the model used. Here, we used an ensemble of the new generation Earth system models to examine the present-day and future changes of summer hypoxia in this region. We applied model-specific thresholds combined with empirical bias adjustments of the dissolved oxygen variance to identify hypoxia. [...]".

 

Source: Frontiers in Marine Science 
Authors: Hui Shi et al.
DOI: https://doi.org/10.3389/fmars.2023.1205536

Read the full article here.


Preprint: Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America ...

Full title: "Seasonality and response of ocean acidification and hypoxia to major environmental anomalies in the southern Salish Sea, North America (2014–2018)"

Abstract.

"Coastal and estuarine ecosystems fringing the North Pacific Ocean are particularly vulnerable to ocean acidification, hypoxia, and intense marine heatwaves as a result of interactions among natural and anthropogenic processes. Here we characterize variability during a seasonally resolved cruise time series in the southern Salish Sea (Puget Sound, Strait of Juan de Fuca) and nearby coastal waters for select physical (temperature, T; salinity, S) and biogeochemical [...]".

 

Source: Biogeosciences
Authors: Simone R. Alin et al.
DOI: https://doi.org/10.5194/bg-2023-181

Read the full article here.


Showing 1 - 10 of 117 results.
Items per Page 10
of 12

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here