News

Sedimentary molybdenum and uranium: Improving proxies for deoxygenation in coastal depositional environments

Abstract. 

"Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is unknown: (1) to what extent Mo and U enrichment factors (Mo- and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary [...]". 

 

Source: Science Direct 
Authors: K. Mareike Paul et al.
DOI: https://doi.org/10.1016/j.chemgeo.2022.121203

Read the full article here.


Recovery from microplastic-induced marine deoxygenation may take centuries

Abstract.

"Climate change and plastics pollution are dual threats to marine environments. Here we use biogeochemical and microplastic modelling to show that even if there is complete removal of microplastics and cessation of deposition in the oceans in 2022, regional recovery from microplastic-induced remineralization and water column deoxygenation could take hundreds of years for coastal upwelling zones, the North Pacific and Southern Ocean. [...]".

 

Source: Nature
Authors: Karin Kvale & Andreas Oschlies
DOI: https://doi.org/10.1038/s41561-022-01096-w 

Read the full article here.


Geochemical and paleontological evidence of early Cambrian dynamic ocean oxygenation and its implications for organic matter accumulation in mudrocks

Abstract. 

"The evolution of global ocean oxygenation during the early Cambrian remains highly controversial, making it difficult to evaluate how environmental triggers play a role in controlling the organic matter (OM) accumulation in black shales. In this study, an integrated approach, including total organic carbon (TOC) content, major and trace element geochemistry, and microscope images, was systematically conducted in a continuous core well that penetrated through the Lower Cambrian Yanjiahe (YJH)–Shuijingtuo (SJT, subdivided into SM Ⅰ, SM Ⅱ, SM Ⅲ, and SM Ⅳ members) successions (∼541-514Ma) at the Three Gorges area [...]".

 

Source: Science Direct 
Authors: Yu Zhang et al.
DOI: https://doi.org/10.1016/j.marpetgeo.2022.105958

Read the full article here.


Iron deposition during recovery from Late Devonian oceanic anoxia: Implications of the geochemistry of the Kawame ferromanganese deposit, Nedamo Belt

Abstract. 

"The Late Devonian, during which one of the “Big Five” Phanerozoic mass extinction events occurred, was one of the most important time intervals in Earth history. Nevertheless, the paucity of deep-sea records due to subduction has hampered elucidation of the pelagic environment during the Late Devonian in Panthalassa. However, ancient hydrothermal ferromanganese sediments, which were deposited on the abyssal seafloor and then accreted onto continental margins, are preserved as umber deposits and exposed in accretionary prisms. These sediments can provide key information to characterize the paleo-ocean. [...]".

 

Source: Science Direct 
Authors: Yusuke Kuwahara et al. 
DOI: https://doi.org/10.1016/j.gloplacha.2022.103920

Read the full article here.


Ocean biogeochemical modelling

Abstract. 

"Ocean biogeochemical models describe the ocean’s circulation, physical properties, biogeochemical properties and their transformations using coupled differential equations. Numerically approximating these equations enables simulation of the dynamic evolution of the ocean state in realistic global or regional spatial domains, across time spans from years to centuries. This Primer explains the process of model construction and the main characteristics, advantages and drawbacks of different model types, from the simplest nutrient–phytoplankton–zooplankton–detritus model to the complex biogeochemical models used in Earth system modelling and climate prediction. [...]".

 

Source: Nature Reviews Methods Primers 
Authors: Katja Fennel et al.
DOI: https://doi.org/10.1038/s43586-022-00154-2 

Read the full article here.


Ventilation changes drive orbital-scale deoxygenation trends in the late Cretaceous ocean

Abstract. 

"Mechanisms that drive cyclicity in marine sediment deposits during hothouse climate periods in response to Earth’s orbit variations remain debated. Orbital cycles fingerprint in the oceanographic records results from the combined effect of terrestrial (e.g. weathering-derived nutrient supply, freshwater discharge) and oceanic (e.g. productivity, oxygenation) processes, whose respective contribution remains to be clarified. [...]".

 

Source: Geophysical Research Letters
Authors: Anta-Clarisse Sarr et al.
DOI: https://doi.org/10.1029/2022GL099830

Read the full article here.


Ironstone as a proxy of Paleozoic ocean oxygenation

Abstract. 

"Marine ironstone is a Phanerozoic biochemical sedimentary rock that contains abundant primary iron. Although rare, ironstone is conspicuous in the Paleozoic sedimentary record. Its iron source remains contentious, with traditional models invoking a continentally derived source. Increasing sedimentologic evidence suggests that many Paleozoic ironstones formed along favourably oriented continental margins where coastal upwelling delivered ferruginous waters, with the postulated source of iron being deep-ocean hydrothermal fluids. [...]".

 

Source: Science Direct 
Authors: Edward J. Matheson et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117715

Read the full article here.


Continental configuration controls ocean oxygenation during the Phanerozoic

Abstract. 

"The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2). Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. [...]". 

 

Source: Nature
Authors: Alexandre Pohl et al.
DOI: https://doi.org/10.1038/s41586-022-05018-z 

Read the full article here.


Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation

Abstract. 

"Most previous studies focused on the redox state of the deep water, leading to an incomplete understanding of the spatiotemporal evolution of the redox-stratified ocean during the Ediacaran–Cambrian transition. In order to decode the redox condition of shallow marine environments during the late Ediacaran, this study presents I/(Ca + Mg), carbon and oxygen isotope, major, trace, and rare earth element data of subtidal to peritidal dolomite from the Dengying Formation at Yangba, South China. [...]".

 

Source: Wiley Online Library
Authors: Yi Ding et al.
DOI: https://doi.org/10.1111/gbi.12520

Read the full article here.


The Fate of Oxygen in the Ocean and Its Sensitivity to Local Changes in Biological Production

Abstract. 

"We investigate the sensitivity of the oxygen content and true oxygen utilization of key low-oxygen regions Ω to pointwise changes in biological production. To understand how the combined water and biogenic particle transport controls the sensitivity patterns and the fate of oxygen in the ocean, we develop new relationships that link the steady-state oxygen content and deficit of Ω to the downstream and upstream oxygen utilization rate (OUR), respectively. We find that the amount of oxygen from Ω that will be lost per unit volume at point r is linked to OUR(r) through the mean oxygen age accumulated in Ω. [...]".

 

Source: Wiley Online Library 
Authors: Mark Holzer
DOI: https://doi.org/10.1029/2022JC018802

Read the full article here.


Showing 1 - 10 of 27 results.
Items per Page 10
of 3

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.