News

Plate tectonics controls ocean oxygen levels

Abstract. 

"Variations in ocean oxygen levels during Earth’s history have been linked to evolution and mass extinctions. Simulations now suggest that the configuration of the continents has a substantial impact on ocean oxygenation. [...]". 

 

Source: Nature
Authors: Katrin J. Meissner & Andreas Oschlies
DOI: https://doi.org/10.1038/d41586-022-02187-9

Read the full article here.


A Depth-Transect of Ocean Deoxygenation During the Paleocene-Eocene Thermal Maximum: Magnetofossils in Sediment Cores From the Southeast Atlantic

Abstract. 

"The Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma) presents a past analog for future global warming. Previous studies provided evidence for major loss of dissolved oxygen during the PETM, although understanding the degree and distribution of oxygen loss poses challenges. Magnetofossils produced by magnetotactic bacteria are sensitive to redox conditions in sediments and water columns, and have been used to reconstruct paleoredox conditions over a range of geological settings. [...]".

 

Source: JGR Solid Earth
Authors: Pengfei Xue et al.
DOI: https://doi.org/10.1029/2022JB024714

Read the full article here.


Variability of the oxygen minimum zone associated with primary productivity and hydrographic conditions in the Eastern North Pacific

Abstract. 

"The expansion of the oxygen minimum zone (OMZ) associated with global warming has generated interest in its variability during the last two millennia. Several oceanographic mechanisms, as advection of dissolved oxygen and depletion of dissolved oxygen by oxidation of exported marine productivity, could explain the variability of δ15N in organic matter as a denitrification indicator of the water column in the Pacific Ocean. Our objective was to infer local or remote forcing mechanisms that lead to the strengthening or weakening of the OMZ in the Eastern Tropical North Pacific. [...]". 

 

Source: Science Direct 
Authors: Alberto Sánchez et al.
DOI: https://doi.org/10.1016/j.dsr.2022.103810

Read the full article here.


Continental configuration controls ocean oxygenation during the Phanerozoic

Abstract. 

"The early evolutionary and much of the extinction history of marine animals is thought to be driven by changes in dissolved oxygen concentrations ([O2]) in the ocean. In turn, [O2] is widely assumed to be dominated by the geological history of atmospheric oxygen (pO2). Here, by contrast, we show by means of a series of Earth system model experiments how continental rearrangement during the Phanerozoic Eon drives profound variations in ocean oxygenation and induces a fundamental decoupling in time between upper-ocean and benthic [O2]. [...]". 

 

Source: Nature
Authors: Alexandre Pohl et al.
DOI: https://doi.org/10.1038/s41586-022-05018-z 

Read the full article here.


Low oxygen levels with high redox heterogeneity in the late Ediacaran shallow ocean: Constraints from I/(Ca + Mg) and Ce/Ce* of the Dengying Formation

Abstract. 

"Most previous studies focused on the redox state of the deep water, leading to an incomplete understanding of the spatiotemporal evolution of the redox-stratified ocean during the Ediacaran–Cambrian transition. In order to decode the redox condition of shallow marine environments during the late Ediacaran, this study presents I/(Ca + Mg), carbon and oxygen isotope, major, trace, and rare earth element data of subtidal to peritidal dolomite from the Dengying Formation at Yangba, South China. [...]".

 

Source: Wiley Online Library
Authors: Yi Ding et al.
DOI: https://doi.org/10.1111/gbi.12520

Read the full article here.


Major sulfur cycle perturbations in the Panthalassic Ocean across the Pliensbachian-Toarcian boundary and the Toarcian Oceanic Anoxic Event

Abstract. 

"The early Toarcian Oceanic Anoxic Event (T-OAE, ~183 Ma) was characterized by marine deoxygenation and the burial of organic-rich sediments at numerous localities worldwide. However, the extent of marine anoxia and its impact on the sulfur cycle during the T-OAE is currently poorly understood. Here, stable sulfur isotopes of reduced metal-bound sulfur (δ34Spyrite) and pyrite sulfur concentrations (SPY) have been analyzed across the Pliensbachian-Toarcian boundary (Pl-To) and the T-OAE from the Sakahogi and Sakuraguchi-dani sections (Japan), which were deposited in the deep and shallow Panthalassic Ocean, respectively. [...]".

 

Source: Science Direct 
Authors: Wenhan Chen et al.
DOI: https://doi.org/10.1016/j.gloplacha.2022.103884

Read the full article here.


The Fate of Oxygen in the Ocean and Its Sensitivity to Local Changes in Biological Production

Abstract. 

"We investigate the sensitivity of the oxygen content and true oxygen utilization of key low-oxygen regions Ω to pointwise changes in biological production. To understand how the combined water and biogenic particle transport controls the sensitivity patterns and the fate of oxygen in the ocean, we develop new relationships that link the steady-state oxygen content and deficit of Ω to the downstream and upstream oxygen utilization rate (OUR), respectively. We find that the amount of oxygen from Ω that will be lost per unit volume at point r is linked to OUR(r) through the mean oxygen age accumulated in Ω. [...]".

 

Source: Wiley Online Library 
Authors: Mark Holzer
DOI: https://doi.org/10.1029/2022JC018802

Read the full article here.


Mo isotope composition of the 0.85 Ga ocean from coupled carbonate and shale archives: Some implications for pre-Cryogenian oxygenation

Abstract.

"This study addresses marine palaeoredox conditions of the mid-Neoproterozoic by analysing the Mo isotope, trace element, and U-Th-Pb isotope compositions of shallow water microbial carbonate, deep water pelagic carbonate, and shale from the Stone Knife Formation (SKF) in NW Canada. The U-Th-Pb isotope SKF systematics of reef microbialite carbonates, and the moderately expressed negative Ce anomalies are consistent with the presence of dissolved O2 in the surface waters. [...]".

 

Source: Science Direct 
Authors: Edel Mary O'Sullivan et al.
DOI: https://doi.org/10.1016/j.precamres.2022.106760

Read the full article here.


Nitrogen isotope evidence for oxygenated upper ocean during the Cryogenian interglacial period

Abstract.

"The Cryogenian interglacial period have witnessed dramatic changes in climate, oceanic environment and biological evolution. The nitrogen isotopic composition, as an important biogeochemical proxy, has the potential to track both the nutrient cycling and redox conditions in the past. However, nitrogen isotopic data during this interglacial time is rather limited. Here, we present integrated data for nitrogen isotopes (δ15N), as well as organic carbon isotopes (δ13Corg), iron (Fe) speciation, pyrite morphology and trace elements from the Cryogenian interglacial Datangpo Formation derived from a drill core from South China to figure out the nitrogen cycling and coeval redox states. [...]". 

 

Source: Science Direct 
Authors: Guangyou Zhu et al.
DOI: https://doi.org/10.1016/j.chemgeo.2022.120929

Read the full article here.


Isotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria

Abstract. 

"The Cenomanian-Turonian Oceanic Anoxic Event 2 (OAE 2, ca. 94 Ma) was one of the most extreme carbon cycle and climatic perturbations of the Phanerozoic Eon. Widespread deposition of organic-rich shales during OAE 2 has been attributed to a rapid rise in atmospheric CO2, global heating, and marine anoxia triggered by intense large igneous province (LIP) volcanism. Here, we present new Hg and Zn elemental and isotopic analyses from samples spanning OAE 2 in a hemipelagic section from Rehkogelgraben, Austria, which was part of the north-western Tethys. [...]".

 

Source: Science Direct 
Authors: Hanwei Yao et al.
DOI: https://doi.org/10.1016/j.gloplacha.2022.103881

Read the full article here.


Uranium isotope reconstruction of ocean deoxygenation during OAE 2 hampered by uncertainties in fractionation factors and local U-cycling

Abstract. 

"A δ238U record of changing ocean anoxia during OAE 2 is reconstructed using seawater derived U in pelagic marine sediments in the Portland #1 core in the south-central region of the Western Interior Seaway of North America. The peak negative excursion of 1.4‰ in authigenic sedimentary δ238U values is consistent with expansion of marine anoxia during the event, but the size of the shift is much larger than the negative excursions recorded in two other published records. [...]". 

 

Source: Science Direct 
Authors: Brayden S. McDonald et al.
DOI: https://doi.org/10.1016/j.gca.2022.05.010

Read the full article here.


Geochemical evidence from the Kioto Carbonate Platform (Tibet) reveals enhanced terrigenous input and deoxygenation during the early Toarcian

Abstract.

"The early Toarcian, as registered in a variety of sedimentary archives, was characterized by an abrupt negative carbon-isotope excursion (CIE) typically superimposed on a long-term positive trend, and was accompanied by significant climatic and environmental changes. However, the changes in continental weathering influx and oceanic deoxygenation in shallow waters and their possible role in causing carbonate-platform crises in low latitudes remains poorly constrained. [...]".

 

Source: Science Direct 
Authors: Zhong Han et al.
DOI: https://doi.org/10.1016/j.gloplacha.2022.103887

Read the full article here.


Mercury stable isotopes suggest reduced foraging depth in oxygen minimum zones for blue sharks

Abstract. 

"Oxygen minimum zones (OMZs) are currently expanding across the global ocean due to climate change, leading to a compression of usable habitat for several marine species. Mercury stable isotope compositions provide a spatially and temporally integrated view of marine predator foraging habitat and its variability with environmental conditions. Here, we analyzed mercury isotopes in blue sharks Prionace glauca from normoxic waters in the northeastern Atlantic and from the world's largest and shallowest OMZ, located in the northeastern Pacific (NEP). [...]".

 

Source: Science Direct 
Authors: Gaël Le Croizier et al.
DOI: https://doi.org/10.1016/j.marpolbul.2022.113892

Read the full article here.


Decoupled oxygenation of the Ediacaran ocean and atmosphere during the rise of early animals

Abstract. 

"The Ediacaran Period (∼635 to 541 Ma) witnessed the early diversification and radiation of metazoans, in the form of the Ediacaran Biota. This biological revolution, beginning at ∼575 Ma, has been widely attributed to a temporally restricted episode of deeper ocean oxygenation, potentially caused by a contemporaneous rise in atmospheric oxygen levels. However, quantitative geochemical-record-driven estimates of Ediacaran atmospheric and oceanic redox evolution are lacking, and hence possible links between oceanic and atmospheric oxygenation remain speculative. [...]". 

 

Source: Science Direct 
Authors: Wei Shi et al.
DOI: https://doi.org/10.1016/j.epsl.2022.117619

Read the full article here.


EBUS Conference 2022 - Registration

Registration is now open 

EBUS Conference: September 19 - 23, 2022 in Lima, Peru

"The Open Science Conference on Eastern Boundary Upwelling Systems (EBUS): Past, Present and Future and the Second International Conference on the Humboldt Current System are planned for September 19 - 23 in Lima, Peru. Although the conference aims to be in-person, options for virtual participation will be provided.

The meeting will bring together PhD students, early career scientists and world experts to understand, review, and synthesize what is known about dynamics, sensitivity, vulnerability and resilience of Eastern Boundary Upwelling Systems and their living resources to climate variability, change and extreme events."

Registration ("early bird" deadline: August 30, 2022).

For further information please visit the event's homepage.


Oxygen minimum zone copepods in the Arabian Sea and the Bay of Bengal: Their adaptations and status

Abstract.

"The Arabian Sea and the Bay of Bengal are cul-de-sacs of the northern Indian Ocean, and they contain more than half of the world's Oxygen Minimum Zones (OMZs). The current study reviews the vast and advancing literature on the oceanographic settings that lead to distinct OMZs in the Arabian Sea and the Bay of Bengal and links them with the copepods thriving there, their status, and likely adaptations. The Arabian Sea has a thicker perennial subsurface OMZ (∼1000 m) than the Bay of Bengal (∼500 m), which is linked to high plankton production via upwelling and winter convection in the former and river influx and mesoscale eddies in the latter. [...]."

 

Source: Science Direct 
Authors: Vidhya Vijayasenan et al.
DOI: https://doi.org/10.1016/j.pocean.2022.102839

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here

Upcoming Events

« July 2024 »
11
GO2NE Webinar on Ocean Deoxygenation
31
Ocean deoxygenation session in AGU meeting 2024 - Abstract submission

Go to all events