A double-edged sword: The role of sulfate in anoxic marine phosphorus cycling through Earth history


"Modern anoxic marine sediments release phosphorus (P) to seawater, driving feedbacks at multiple timescales. On sub-Myr timescales, anoxic P regeneration amplifies ocean deoxygenation; on multi-Myr timescales, it stabilizes atmospheric O2. Some authors have extended this thinking to the Precambrian: by analogy, widespread ocean anoxia would imply extensive P regeneration from sediments. However, this neglects the role of sulfate in P regeneration. [...]".


Source: Geophysical Research Letters
Authors: Michael A. Kipp

Read the full article here.

Enhanced phosphorus recycling during past oceanic anoxia amplified by low rates of apatite authigenesis


"Enhanced recycling of phosphorus as ocean deoxygenation expanded under past greenhouse climates contributed to widespread organic carbon burial and drawdown of atmospheric CO2. Redox-dependent phosphorus recycling was more efficient in such ancient anoxic marine environments, compared to modern anoxic settings, for reasons that remain unclear. Here, we show that low rates of apatite authigenesis in organic-rich sediments can explain the amplified phosphorus recycling in ancient settings as reflected in highly elevated ratios of organic carbon to total phosphorus. [...]".


Source: Science Advances 
Authors: Nina M. Papadomanolaki et al.
DOI: 10.1126/sciadv.abn2370

Read the full article here.

The coupling of Phanerozoic continental weathering and marine phosphorus cycle


"Organic matter production and decomposition primarily modulate the atmospheric O2 and CO2 levels. The long term marine primary productivity is controlled by the terrestrial input of phosphorus (P), while the marine P cycle would also affect organic matter production. In the past 540 million years, the evolution of terrestrial system, e.g. colonization of continents by vascular land plants in late Paleozoic, would certainly affect terrestrial P input into the ocean, which in turn might have impacted the marine primary productivity and organic carbon burial. [...]"

Source: Scientific Reports
Authors: Ruimin Wang et al.
DOI: 10.1038/s41598-020-62816-z

Read the full article here.


It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to