News

Extensive Accumulation of Nitrous Oxide in the Oxygen Minimum Zone in the Bay of Bengal

Abstract.

"The production by microorganisms of nitrous oxide (N2O), a trace gas contributing to global warming and stratospheric ozone depletion, is enhanced around the oceanic oxygen minimum zones (OMZs). The production constitutes an important source of atmospheric N2O. Although an OMZ is found in the northern part of the eastern Indian Ocean, the Bay of Bengal (BoB), two earlier studies conducted during the later phase of winter monsoon (February) and spring intermonsoon (March–April) found quite different magnitudes of N2O accumulation. [...]".

 

Source: Wiley Online Library
Authors: Sakae Toyoda et al.
DOI: https://doi.org/10.1029/2022GB007689

Read the full article here.


Pathways of N2O production by marine ammonia-oxidizing archaea determined from dual-isotope labeling

Abstract. 

"The ocean is a net source of the greenhouse gas and ozone-depleting substance, nitrous oxide (N2O), to the atmosphere. Most of that N2O is produced as a trace side product during ammonia oxidation, primarily by ammonia-oxidizing archaea (AOA), which numerically dominate the ammonia-oxidizing community in most marine environments. The pathways to N2O production and their kinetics, however, are not completely understood. Here, we use 15N and 18O isotopes to determine the kinetics of N2O production and trace the source of nitrogen (N) and oxygen (O) atoms in N2O produced by a model marine AOA species, Nitrosopumilus maritimus. [...]".

 

Source: Proceedings of the National Academy of Sciences
Authors: Xianhui S. Wan et al.
DOI: https://doi.org/10.1073/pnas.2220697120

Read the full article here.


Nitrous Oxide Distributions in the Oxygenated Water Column of the Sargasso Sea

Abstract. 

"This study presents dissolved nitrous oxide (N2O) concentrations in the water column at the Bermuda Atlantic Time-series Study (BATS) station and uses a subset of these measurements to estimate air-to-sea flux for four specific time points between September 2018 and June 2019. N2O concentrations at BATS were in the range of 4.0 nmol L−1–16.9 nmol L−1, with vertical profiles which were the mirror inverse of dissolved oxygen. Regardless of season, N2O concentration maxima were found within the oxygen minimum zone (OMZ). The highest maximum N2O values were observed in November and lowest in October. [...]".

 

Source: Taylor & Francis Online
Authors: Annaliese C.S. Meyer et al. 
DOI: https://doi.org/10.1080/07055900.2022.2153325

Read the full article here.


Quantifying Nitrous Oxide Cycling Regimes in the Eastern Tropical North Pacific Ocean With Isotopomer Analysis

Abstract.

"Nitrous oxide (N2O), a potent greenhouse gas, is produced disproportionately in marine oxygen deficient zones (ODZs). To quantify spatiotemporal variation in N2O cycling in an ODZ, we analyzed N2O concentration and isotopologues along a transect through the eastern tropical North Pacific (ETNP). At several stations along this transect, N2O concentrations reached a near surface maximum that exceeded prior measurements in this region, of up to 226.1 ± 20.5 nM at the coast. Above the σθ = 25.0 kg/m3 isopycnal, Keeling plot analysis revealed two sources[...]"

Source: AGU- Advanced Earth and Space Science
Author: Colette L. Kelly et al.
DOI: https://doi.org/10.1029/2020GB006637

Read the full article here.


Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru

Abstract.

"Oxygen-deficient zones (ODZs) are major sites of net natural nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ in the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N tracer experiments in combination with quantitative PCR (qPCR) and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. [...]"

Source: Biogeosciences
Authors: Claudia Frey et al.
DOI: 10.5194/bg-17-2263-2020

Read the full article here.


Response of N2O production rate to ocean acidification in the western North Pacific

Abstract.

"Ocean acidification, induced by the increase in anthropogenic CO2 emissions, has a profound impact on marine organisms and biogeochemical processes1. The response of marine microbial activities to ocean acidification might play a crucial role in the future evolution of air–sea fluxes of biogenic gases such as nitrous oxide (N2O), a strong GHG and the dominant stratospheric ozone-depleting substance2. Here, we examine the response of N2O production from nitrification to acidification in a series of incubation experiments conducted in subtropical and subarctic western North Pacific. [...]"

Source: Nature Climate Change
Authors: Florian Breider et al.
DOI: 10.1038/s41558-019-0605-7

Read the full article here.


Interactions of anaerobic ammonium oxidizers and sulfide-oxidizing bacteria in a substrate-limited model system mimicking the marine environment

Abstract. 

"In nature anaerobic ammonium oxidation (anammox) and denitrification processes convert fixed nitrogen to gaseous nitrogen compounds, which are then released to the atmosphere. While anammox bacteria produce N2 from ammonium and nitrite, in the denitrification process nitrate and nitrite are converted to N2 and the greenhouse gas nitrous oxide (N2O). [...]"

Source: FEMS Microbiology Ecology
Authors: Lina Russ et al. 
DOI: 10.1093/femsec/fiz137

Read the full article here.


Nitrous oxide in the northern Gulf of Aqaba and the central Red Sea

Abstract.

"Nitrous oxide (N2O) is a climate-relevant atmospheric trace gas. It is produced as an intermediate of the nitrogen cycle. The open and coastal oceans are major sources of atmospheric N2O. However, its oceanic distribution is still largely unknown. Here we present the first measurements of the water column distribution of N2O in the Gulf of Aqaba and the Red Sea. [...]"

Source: Deep Sea Research Part II: Topical Studies in Oceanography
Authors: Hermann W.Bange et al.
DOI: 10.1016/j.dsr2.2019.06.015

Read the full article here.


Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification

Abstract.

"The coastal upwelling regime off Peru in December 2012 showed considerable vertical concentration gradients of dissolved nitrous oxide (N2O) across the top few meters of the ocean. The gradients were predominantly downward, i.e., concentrations decreased toward the surface. Ignoring these gradients causes a systematic error in regionally integrated gas exchange estimates, when using observed concentrations at several meters below the surface as input for bulk flux parameterizations – as is routinely practiced. [...]"

Source: Biogeosciences
Authors: Tim Fischer et al.
DOI: 10.5194/bg-16-2307-2019

Read the full article here.


Investigating the effect of El Niño on nitrous oxide distribution in the eastern tropical South Pacific

Abstract.

"The open ocean is a major source of nitrous oxide (N2O), an atmospheric trace gas attributable to global warming and ozone depletion. Intense sea-to-air N2O fluxes occur in major oceanic upwelling regions such as the eastern tropical South Pacific (ETSP). The ETSP is influenced by the El Niño–Southern Oscillation that leads to inter-annual variations in physical, chemical, and biological properties in the water column. In October 2015, a strong El Niño event was developing in the ETSP; we conduct field observations to investigate (1) the N2Oproduction pathways and associated biogeochemical properties and (2) the effects of El Niño on water column N2O distributions and fluxes using data from previous non-El Niño years. [...]"

Source: Biogeosciences
Authors: Qixing Ji et al.
DOI: 10.5194/bg-16-2079-2019

Read the full article here.


Showing 1 - 10 of 11 results.
Items per Page 10
of 2

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here