News

Role of climate variability on deep-water dynamics and deoxygenation during sapropel deposition ...

Full title: "Role of climate variability on deep-water dynamics and deoxygenation during sapropel deposition: New insights from a palaeoceanographic empirical approach"

Abstract.

"Modern marine settings are experiencing rapid deoxygenation mainly forced by global warming and anthropogenic eutrophication. Therefore, studies that assess the role of climate variability in large spatiotemporal deoxygenations during past climate changes are needed to better comprehend the consequences of the current global warming and ocean deoxygenation. [...]".

 

Source: Science Direct
Authors: Ricardo D. Monedero-Contreras et al.
DOI: https://doi.org/10.1016/j.palaeo.2023.111601

Read the full article here.


Sedimentary molybdenum and uranium: Improving proxies for deoxygenation in coastal depositional environments

Abstract. 

"Sedimentary molybdenum (Mo) and uranium (U) enrichments are widely used to reconstruct changes in bottom water oxygen conditions in aquatic environments. Until now, most studies using Mo and U have focused on restricted suboxic-euxinic basins and continental margin oxygen minimum zones (OMZs), leaving mildly reducing and oxic (but eutrophic) coastal depositional environments vastly understudied. Currently, it is unknown: (1) to what extent Mo and U enrichment factors (Mo- and U-EFs) can accurately reconstruct oxygen conditions in coastal sites experiencing mild deoxygenation, and (2) to what degree secondary [...]". 

 

Source: Science Direct 
Authors: K. Mareike Paul et al.
DOI: https://doi.org/10.1016/j.chemgeo.2022.121203

Read the full article here.


Trace elements V, Ni, Mo and U: A geochemical tool to quantify dissolved oxygen concentration in the oxygen minimum zone of the north-eastern Pacific

Abstract.

"Deoxygenation of the water column in the oceans and in the oxygen minimum zone (OMZ) has become relevant due to its connection with global climate change. The variability of the OMZ has been inferred by in situ measurements for the last 70 years and qualitatively assessed through the monitoring of trace elements and the nitrogen stable isotope ratio (δ15N) of organic matter on several time scales. The V, Ni, Mo and U concentrations in surface sediments and the dissolved oxygen concentration in the water column of La Paz Bay and the Mazatlán margin were used to propose an exponential regression model. This model will allow the inference of the dissolved oxygen concentration in the sedimentary records from the Alfonso Basin in La Paz Bay and in the Mazatlán margin over the last 250 years. [...]".

 

Source: Science Direct
Authors: Alberto Sánchez et al. 
DOI: https://doi.org/10.1016/j.jmarsys.2022.103732

Read the full article here.


Processes affecting dissolved iron across the Subtropical North Atlantic: a model study

Abstract.

"Trace metal measurements in recent years have revealed a complex distribution of dissolved iron (dFe) in the ocean that models still struggle to reproduce. The GEOTRACES section GA03 across the subtropical North Atlantic was chosen to study the driving processes involved in the Fe cycle in the region. [...]"

Source: Ocean Dynamics
Authors: Anna Pagnone et al.
DOI: 10.1007/s10236-019-01288-w

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here