News

Brief oxygenation events in locally anoxic oceans during the Cambrian solves the animal breathing paradox

Abstract.

"Oxygen is a prerequisite for all large and motile animals. It is a puzzling paradox that fossils of benthic animals are often found in black shales with geochemical evidence for deposition in marine environments with anoxic and sulfidic bottom waters. It is debated whether the geochemical proxies are unreliable, affected by diagenesis, or whether the fossils are transported from afar or perhaps were not benthic.  [...]"

Source: Scientific Reports
Authors: Tais W. Dahl et al.
DOI: 10.1038/s41598-019-48123-2

Read the full article here.


Global Perspectives on Observing Ocean Boundary Current Systems

Abstract.

"Ocean boundary current systems are key components of the climate system, are home to highly productive ecosystems, and have numerous societal impacts. Establishment of a global network of boundary current observing systems is a critical part of ongoing development of the Global Ocean Observing System. The characteristics of boundary current systems are reviewed, focusing on scientific and societal motivations for sustained observing. Techniques currently used to observe boundary current systems are reviewed, followed by a census of the current state of boundary current observing systems globally. The next steps in the development of boundary current observing systems are considered, leading to several specific recommendations. [...]"

Source: Frontiers in Marine Science
Authors: Robert E. Todd et al.
DOI: 10.3389/fmars.2019.00423

Read the full article here.


Microbial diversity of the Arabian Sea in the Oxygen minimum zones by metagenomics approach

Abstract.

"Large oxygen depleted areas known as oxygen minimum zones (OMZ) have been observed in the Arabian Sea and recent reports indicate that these areas are expanding at an alarming rate. In marine waters, oxygen depletion may also be related to global warming and the temperature rise, acidification and deoxygenation can lead to major consequences wherein the plants, fish and other biota will struggle to survive in the ecosystem. [...]"

Source: bioRxiv
Authors: Mandar S Paingankar et al.
DOI: 10.1101/731828

Read the full article here.


Subseafloor life and its biogeochemical impacts

Abstract.

"Subseafloor microbial activities are central to Earth’s biogeochemical cycles. They control Earth’s surface oxidation and major aspects of ocean chemistry. They affect climate on long timescales and play major roles in forming and destroying economic resources. In this review, we evaluate present understanding of subseafloor microbes and their activities, identify research gaps, and recommend approaches to filling those gaps. [...]"

Source: Nature Communications
Authors: Steven D’Hondt et al.
DOI: 10.1038/s41467-019-11450-z

Read the full article here.


Climate change could shrink oyster habitat in California

"Ocean acidification is bad news for shellfish, as it makes it harder for them to form their calcium-based shells. But climate change could also have multiple other impacts that make California bays less hospitable to shelled organisms like oysters, which are a key part of the food web.

Changes to water temperature and chemistry resulting from human-caused climate change could shrink the prime habitat and farming locations for oysters in California bays, according to a new study from the University of California, Davis. [...]"

Source: Science Daily

Read the full article here.


The Sensitivity of Future Ocean Oxygen to Changes in Ocean Circulation

Abstract.

"A decline in global ocean oxygen concentrations has been observed over the twentieth century and is predicted to continue under future climate change. We use a unique modeling framework to understand how the perturbed ocean circulation may influence the rate of ocean deoxygenation in response to a doubling of atmospheric CO2 and associated global warming. [...]"

Source: Global Biogeochemical Cycles
Authors: Jaime B. Palter and David S. Trossman
DOI: 10.1002/2017GB005777

Read the full article here.


NASA targets coastal ecosystems with new space sensor

"NASA has selected a space-based instrument under its Earth Venture Instrument (EVI) portfolio that will make observations of coastal waters to help protect ecosystem sustainability, improve resource management, and enhance economic activity. The selected Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR) instrument, led by principal investigator Joseph Salisbury at the University of New Hampshire, Durham, will provide unique observations of ocean biology, chemistry, and ecology in the Gulf of Mexico, portions of the southeastern United States coastline, and the Amazon River plume—where the waters of the Amazon River enter the Atlantic Ocean.[...]"

Source: phys.org

Read the full article here.


On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array

Abstract.

"The Argo Program has been implemented and sustained for almost two decades, as a global array of about 4000 profiling floats. Argo provides continuous observations of ocean temperature and salinity versus pressure, from the sea surface to 2000 dbar. The successful installation of the Argo array and its innovative data management system arose opportunistically from the combination of great scientific need and technological innovation. Through the data system, Argo provides fundamental physical observations with broad societally-valuable applications, built on the cost-efficient and robust technologies of autonomous profiling floats. [...]"

Source: Frontiers in Marine Science
Authors: Dean Roemmich et al.
DOI: 10.3389/fmars.2019.00439

Read the full article here. 


Large ‘dead zone’ measured in Gulf of Mexico

Hurricane Barry dampens initial size predictions

"This year’s Gulf of Mexico “dead zone”— an area of low oxygen that can kill fish and marine life — is approximately 6,952 square miles, according to NOAA-supported scientists. The measured size of the dead zone, also called the hypoxic zone, is the 8th largest in the 33-year record and exceeds the 5,770-square-mile average from the past five years. [...]"

Source: NOAA

Read the full article here.


Powering Ocean Giants: The Energetics of Shark and Ray Megafauna

Abstract.

"Energetics studies have illuminated how animals partition energy among essential life processes and survive in extreme environments or with unusual lifestyles. There are few bioenergetics measurements for elasmobranch megafauna; the heaviest elasmobranch for which metabolic rate has been measured is only 47.7 kg, despite many weighing >1000 kg. Bioenergetics models of elasmobranch megafauna would answer fundamental ecological questions surrounding this important and vulnerable group, and enable an understanding of how they may respond to changing environmental conditions, such as ocean warming and deoxygenation. [...]"

Source: Trends in Ecology & Evolution
Authors: Christopher L. Lawson et al.
DOI: 10.1016/j.tree.2019.07.001

Read the full article here.


Showing 661 - 670 of 1,195 results.
Items per Page 10
of 120

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here

Upcoming Events

« April 2024 »
3
GO2NE Webinar on Ocean Deoxygenation
9
In-person satellite event regarding eutrophication and hypoxia

Go to all events