News

Evolution of (Bio-)Geochemical Processes and Diagenetic Alteration of Sediments Along the Tectonic Migration of Ocean Floor in the Shikoku Basin off J

Abstract.

"Biogeochemical processes in subseafloor sediments are closely coupled to global element cycles. To improve the understanding of changes in biogeochemical conditions on geological timescales, we investigate sediment cores from a 1,180 m deep hole in the Nankai Trough offshore Japan (Site C0023) drilled during International Ocean Discovery Program Expedition 370. During its tectonic migration from the Shikoku Basin to the Nankai Trough over the past 15 Ma, Site C0023 has experienced significant changes in[...]"

 

Source: AGU- Advancing Earth and Space Science
Authors: Male Köster et al.
DOI: https://doi.org/10.1029/2020GC009585

Read the full article here.


Oxygen Seasonality, Utilization Rate, and Impacts of Vertical Mixing in the Eighteen Degree Water Region of the Sargasso Sea as Observed by Profiling

Abstract.

"Seasonal oxygen structure and utilization in the Sargasso Sea are characterized using nine profiling floats with oxygen 2021 sensors (years 2005–2008), deployed in an Eighteen Degree Water (EDW) experiment (CLIMODE). During autumn-winter when the mixed layer is deepening, oxygen increases from the surface to the base of the EDW at 400 m. During spring-summer, oxygen decreases except between the seasonal pycnocline and compensation depth, creating the seasonal shallow oxygen maximum layer (SOMax) with oxygen production[...]"

 

Source: Advancing Earth and Space Science
Authors: Samuel J. Billheimer et al.
DOI: https://doi.org/10.1029/2020GB006824

Read the full article here.


Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations

Abstract.

"Oxygen-depleted regions of the global ocean are rapidly expanding, with important implications for global biogeochemical cycles. However, our ability to make projections about the future of oxygen in the ocean is limited by a lack of empirical data with which to test and constrain the behavior of global climatic and oceanographic models. We use depth-stratified plankton tows to demonstrate that some species of planktic foraminifera are adapted to life in the heart of the pelagic oxygen minimum zone (OMZ). In particular, we identify two species, Globorotaloides hexagonus and Hastigerina parapelagica, living within the eastern tropical North Pacific OMZ. The tests of the former are preserved in marine sediments and could be used to trace the extent and intensity of low-oxygen pelagic habitats in the fossil record. Additional morphometric analyses of G. hexagonus show that tests found in the lowest oxygen[...]"

Source: Biogeosciences
Authors: Catherine V. Davis et al.
DOI: https://doi.org/10.5194/bg-18-977-2021

Read the full article here.


The rise of angiosperms strengthened fire feedbacks and improved the regulation of atmospheric oxygen

Abstract.

"The source of oxygen to Earth’s atmosphere is organic carbon burial, whilst the main sink is oxidative weathering of fossil carbon. However, this sink is to insensitive to counteract oxygen rising above its current level of about 21%. Biogeochemical models suggest that wildfires provide an additional regulatory feedback mechanism. However, none have considered how the evolution of different plant groups through time have interacted with this feedback. The Cretaceous Period[...]"

 

Source: Nature Geoscience
Authors: Claire M. Belcher et al.
DOI: https://doi.org/10.1038/s41467-020-20772-2

Read the full article here.


The role of environmental factors in the long-term evolution of the marine biological pump

Absract.

"The biological pump—the transfer of atmospheric carbon dioxide to the ocean interior and marine sediments as organic carbon—plays a critical role in regulating the long-term carbon cycle, atmospheric composition and climate. Despite its centrality in the Earth system, the response of the biological pump to biotic innovation and climatic fluctuations through most stages of Earth’s history has been largely conjectural. Here we use a mechanistic model of the biological carbon pump to revisit the factors controlling[...]"

 

Source: Nature Geoscience
Authors: Mojtaba Fakhraee et al.
DOI: https://doi.org/10.1038/s41561-020-00660-6

Read the full article here.


Increased carbon capture by a silicate-treated forested watershed affected by acid deposition

Abstract.

"Meeting internationally agreed-upon climate targets requires carbon dioxide removal (CDR) strategies coupled with an urgent phase-down of fossil fuel emissions. However, the efficacy and wider impacts of CDR are poorly understood. Enhanced rock weathering (ERW) is a land-based CDR strategy requiring large-scale field trials. Here we show that a low 3.44 t ha−1 wollastonite treatment in an 11.8 ha acid-rain-impacted forested watershed in New Hampshire, USA, led to cumulative carbon capture by carbonic acid weathering of 0.025–0.13 t CO2 ha−1 over 15 years. Despite a 0.8–2.4 t CO2 ha−1 logistical carbon penalty from mining, grinding, transportation[...]"

 

Source: Biogeosciences
Authors: Lyla L. Taylor et al.
DOI: https://doi.org/10.5194/bg-18-169-2021

Read the full article here.


Simulating shrubs and their energy and carbon dioxide fluxes in Canada's Low Arctic with the Canadian Land Surface Scheme Including biogeochemical Cyc

Abstract.

"The Arctic is warming more rapidly than other regions of the world leading to ecosystem change including shifts in vegetation communities, permafrost degradation and alteration of tundra surface-atmosphere energy and carbon (C) fluxes, among others. However, year-round C and energy flux measurements at high-latitude sites remain rare. This poses a challenge for evaluating the impacts of climate change on Arctic tundra ecosystems and for developing and evaluating process-based models, which may be used to predict regional and global energy and C feedbacks to the climate system. Our study used 14 years of seasonal eddy covariance (EC) measurements of carbon dioxide (CO2), water and energy fluxes and winter soil chamber CO2 flux measurements at a dwarf-shrub tundra site underlain by continuous permafrost in Canada's Southern Arctic ecozone to evaluate the incorporation[...]"

Source: Biogeosciences
Authors: Gesa Meyer et al.
DOI: https://doi.org/10.5194/bg-2020-458


The influence of plastic pollution and ocean change on detrital decomposition

Abstract.

"Plastic pollution and ocean change have mostly been assessed separately, missing potential interactions that either enhance or reduce future impacts on ecosystem processes. Here, we used manipulative experiments with outdoor mesocosms to test hypotheses about the interactive effects of plastic pollution, ocean warming and acidification on macrophyte detrital decomposition. These experiments focused on detritus from kelp, Ecklonia radiata, and eelgrass, Zostera muelleri, and included crossed treatments of (i) no, low and high plastic pollution, (ii) current/future ocean temperatures, and (iii) ambient/future ocean partial pressure of carbon dioxide (pCO2). High levels of plastic pollution significantly reduced[...]"

 

Source: Science Direct
Authors: Sebastian G. Litchfield et al.
DOI: https://doi.org/10.1016/j.marpolbul.2020.111354

Read the full article here.


Acceleration of ocean warming, salinification, deoxygenation and acidification in the surface subtropical North Atlantic Ocean

Abstract.

"Ocean chemical and physical conditions are changing. Here we show decadal variability and recent acceleration of surface warming, salinification, deoxygenation, carbon dioxide (CO2) and acidification in the subtropical North Atlantic Ocean (Bermuda Atlantic Time-series Study site; 1980s to present). Surface temperatures and salinity exhibited interdecadal variability, increased by ~0.85 °C (with recent warming of 1.2 °C) and 0.12, respectively, while dissolved oxygen levels decreased by ~8% (~2% per decade).[...]"

 

Source: Nature - Communications Earth and Environment
Authors: Nicholas Robert Bates et al.
DOI: https://doi.org/10.1038/s43247-020-00030-5

Read the full article here.


Rapid transfer of oxygen to the deep ocean mediated by bubbles

Abstract.

"The concentration of oxygen exerts major controls on life in the ocean, and its distribution in the ocean and atmosphere carries information about biological productivity, transports of mass and heat, ocean deoxygenation and global carbon sinks. Our understanding of processes underlying oxygen distributions, their key features and variability is often lacking. Here we investigate the magnitude, variability and uncertainty of the air–sea flux of oxygen, carbon dioxide and atmospheric potential oxygen over an annual cycle in the Labrador Sea. We demonstrate that two-thirds of the annual oxygen uptake occurs over only 40 days in winter and is associated with a bubble-mediated component[...]"

 

Source: Nature Geoscience
Authors: D. Atamanchuk et al.
DOI: https://doi.org/10.1038/s41561-020-0532-2

Read the full article here.


The Impacts of Ocean Acidification on Marine Ecosystems and Reliant Human Communities

Abstract.

"Rising atmospheric carbon dioxide (CO2) levels, from fossil fuel combustion and deforestation, along with agriculture and land-use practices are causing wholesale increases in seawater CO2 and inorganic carbon levels; reductions in pH; and alterations in acid-base chemistry of estuarine, coastal, and surface open-ocean waters. On the basis of laboratory experiments and field studies of naturally elevated CO2 marine environments, widespread biological impacts of human-driven ocean acidification have been posited, ranging from changes in organism physiology and population dynamics to altered communities and ecosystems. Acidification, in conjunction with other climate change–related environmental stresses, particularly under future climate change[...]"

 

Source: Annual Review of Environment and Resources
Authors: Scott C. Doney et al.
DOI: https://doi.org/10.1146/annurev-environ-012320-083019

Read the full article here.


Ocean acidification reduces growth and grazing impact of Antarctic heterotrophic nanoflagellates

Abstract.

"High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNFs), nano- and picophytoplankton, and prokaryotes (heterotrophic Bacteria and Archaea) in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica.[...]"

 

Source: Biogeosciences
Authors: Stacy Deppeler et al.
DOI: 10.5194/bg-17-4153-2020

Read the  full article here.

 

 


Emergent constraint on Arctic Ocean acidification in the twenty-first century

Abstract.

"The ongoing uptake of anthropogenic carbon by the ocean leads to ocean acidification, a process that results in a reduction in pH and in the saturation state of biogenic calcium carbonate minerals aragonite (Ωarag) and calcite (Ωcalc). Because of its naturally low Ωarag and Ωcalc (refs.), the Arctic Ocean is considered the region most susceptible to future acidification and associated ecosystem impacts. [...]"

Source: Nature
Authors: Jens Terhaar et al.
DOI: 10.1038/s41586-020-2360-3

Read the full article here.


Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO2

Abstract.

"The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO2 emissions and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better understanding of the potential magnitude and sign of ZEC, in addition to the processes that underlie this metric. [...]"

Source: Biogeosciences
Authors: Andrew H. MacDougall et al.
DOI: 10.5194/bg-17-2987-2020

Read the full article here.


Seeding oceans with iron may not impact climate change

"Study finds Earth's oceans contain just the right amount of iron; adding more may not improve their ability to absorb carbon dioxide

Historically, the oceans have done much of the planet's heavy lifting when it comes to sequestering carbon dioxide from the atmosphere. Microscopic organisms known collectively as phytoplankton, which grow throughout the sunlit surface oceans and absorb carbon dioxide through photosynthesis, are a key player.

To help stem escalating carbon dioxide emissions produced by the burning of fossil fuels, some scientists have proposed seeding the oceans with iron -- an essential ingredient that can stimulate phytoplankton growth. Such "iron fertilization" would cultivate vast new fields of phytoplankton, particularly in areas normally bereft of marine life. [...]"

Source: Sciencedaily

Read the full article here.


No detectable Weddell Sea Antarctic Bottom Water export during the Last and Penultimate Glacial Maximum

Abstract.

"Weddell Sea-derived Antarctic Bottom Water (AABW) is one of the most important deep water masses in the Southern Hemisphere occupying large portions of the deep Southern Ocean (SO) today. While substantial changes in SO-overturning circulation were previously suggested, the state of Weddell Sea AABW export during glacial climates remains poorly understood. [...]"

Source: Nature Communications
Authors: Huang Huang et al.
DOI: 10.1038/s41467-020-14302-3

Read the full article here.


Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean

Abstract.

"The Southern Ocean south of 30° S represents only one-third of the total ocean area, yet absorbs half of the total ocean anthropogenic carbon and over two-thirds of ocean anthropogenic heat. In the past, the Southern Ocean has also been one of the most sparsely measured regions of the global ocean. [...]"

Source: Nature Geoscience
Authors: Ben Bronselaer et al.
DOI: 10.1038/s41561-019-0502-8

Read the full article here.


Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a

Abstract.

"The early Aptian Oceanic Anoxic Event (OAE) 1a represents a major perturbation of the Earth's climate system and in particular the carbon cycle, as evidenced by widespread preservation of organic matter in marine settings and a characteristic negative carbon isotopic excursion (CIE) at its onset, followed by a broad positive CIE. The contemporaneous emplacement of a large igneous province (LIP) is invoked as a trigger for OAE 1a (and OAEs in general), but this link and the ultimate source of the carbon perturbation at the onset of OAEs is still debated. [...]"

Source: 
Authors: Markus Adloff et al.
DOI: 10.1016/j.epsl.2019.115947

Read the full article here.


Meeting climate targets by direct CO2 injections: what price would the ocean have to pay?

Abstract.

"We investigate the climate mitigation potential and collateral effects of direct injections of captured CO2 into the deep ocean as a possible means to close the gap between an intermediate CO2 emissions scenario and a specific temperature target, such as the 1.5 C target aimed for by the Paris Agreement. For that purpose, a suite of approaches for controlling the amount of direct CO2 injections at 3000 m water depth are implemented in an Earth system model of intermediate complexity. [...]"

Source: Earth System Dynamics
Authors: Fabian Reith et al.
DOI: 10.5194/esd-10-711-2019

Read the full article here.


Marine nitrogen fixers mediate a low latitude pathway for atmospheric CO2 drawdown

Abstract.

"Roughly a third (~30 ppm) of the carbon dioxide (CO2) that entered the ocean during ice ages is attributed to biological mechanisms. A leading hypothesis for the biological drawdown of CO2 is iron (Fe) fertilisation of the high latitudes, but modelling efforts attribute at most 10 ppm to this mechanism, leaving ~20 ppm unexplained [...]"

Source: Nature Communications 
Authors: Pearse J. Buchanan et al.
DOI: 10.1038/s41467-019-12549-z

Read the full article here.


Ocean phosphorus inventory: large uncertainties in future projections on millennial timescales and their consequences for ocean deoxygenation

Abstract.

"Previous studies have suggested that enhanced weathering and benthic phosphorus (P) fluxes, triggered by climate warming, can increase the oceanic P inventory on millennial timescales, promoting ocean productivity and deoxygenation. In this study, we assessed the major uncertainties in projected P inventories and their imprint on ocean deoxygenation using an Earth system model of intermediate complexity for the same business-as-usual carbon dioxide (CO2) emission scenario until the year 2300 and subsequent linear decline to zero emissions until the year 3000. [...]"

Source: Earth System Dynamics
Authors: Tronje P. Kemena et al.
DOI: 10.5194/esd-10-539-2019

Read the full article here.


As oceans warm, microbes could pump more CO2 back into air, study warns

"The world's oceans soak up about a quarter of the carbon dioxide that humans pump into the air each year -- a powerful brake on the greenhouse effect. In addition to purely physical and chemical processes, a large part of this is taken up by photosynthetic plankton as they incorporate carbon into their bodies. When plankton die, they sink, taking the carbon with them. Some part of this organic rain will end up locked into the deep ocean, insulated from the atmosphere for centuries or more. [...]"

Source: EurekAlert!

Read the full article here.


Enhanced North Pacific deep-ocean stratification by stronger intermediate water formation during Heinrich Stadial 1

Abstract.

"The deglacial history of CO2 release from the deep North Pacific remains unresolved. This is due to conflicting indications about subarctic Pacific ventilation changes based on various marine proxies, especially for Heinrich Stadial 1 (HS-1) when a rapid atmospheric CO2 rise occurs. Here, we use a complex Earth System Model to investigate the deglacial North Pacific overturning and its control on ocean stratification. [...]"

Source: Nature Communications
Authors: X. Gong et al.
DOI: 10.1038/s41467-019-08606-2

Read the full article here.


Asymmetric dynamical ocean responses in warming icehouse and cooling greenhouse climates

Abstract.

"Warm periods in Earth's history tend to cool more slowly than cool periods warm. Here we explore initial differences in how the global ocean takes up and gives up heat and carbon in forced rapid warming and cooling climate scenarios. We force an intermediate-complexity earth system model using two atmospheric CO2 scenarios. A ramp-up (1% per year increase in atmospheric CO2 for 150 years) starts from an average global CO2 concentration of 285 ppm to represent warming of an icehouse climate. [...]"

Source: Environmental Research Letters
Authors: Karin F. Kvale et al.
DOI: 10.1088/1748-9326/aaedc3

Read the full article here.


Effects of Higher CO2 and Temperature on Exopolymer Particle Content and Physical Properties of Marine Aggregates

Abstract.

"We investigated how future ocean conditions, and specifically the interaction between temperature and CO2, might affect marine aggregate formation and physical properties. Initially, mesocosms filled with coastal seawater were subjected to three different treatments of CO2 concentration and temperature: (1) 750 ppm CO2, 16°C, (2) 750 ppm CO2, 20°C, and (3) 390 ppm CO2, 16°C. Diatom-dominated phytoplankton blooms were induced in the mesocosms by addition of nutrients. [...]"

Source: Frontiers in Marine Science
Authors: Carolina Cisternas-Novoa et al.
DOI: 10.3389/fmars.2018.00500

Read the full article here.


Major intensification of Atlantic overturning circulation at the onset of Paleogene greenhouse warmth

Abstract.

"During the Late Cretaceous and early Cenozoic the Earth experienced prolonged climatic cooling most likely caused by decreasing volcanic activity and atmospheric CO2 levels. However, the causes and mechanisms of subsequent major global warming culminating in the late Paleocene to Eocene greenhouse climate remain enigmatic. We present deep and intermediate water Nd-isotope records from the North and South Atlantic to decipher the control of the opening Atlantic Ocean on ocean circulation and its linkages to the evolution of global climate. [...]"

Source: Nature Communications
Authors: S. J. Batenburg et al.
DOI: 10.1038/s41467-018-07457-7

Read the full article here.


Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific

Abstract.

"Increased storage of carbon in the oceans has been proposed as a mechanism to explain lower concentrations of atmospheric carbon dioxide during ice ages; however, unequivocal signatures of this storage have not been found. In seawater, the dissolved gases oxygen and carbon dioxide are linked via the production and decay of organic material, with reconstructions of low oxygen concentrations in the past indicating an increase in biologically mediated carbon storage. [...]"

Source: Nature
Authors: Babette A. A. Hoogakker et al.
DOI: 10.1038/s41586-018-0589-x

Read the full article here.


Oregon Now Has A Hypoxia Season, Just Like A Wildfire Season

"Scientists say warming ocean temperatures mean Oregon’s coastal waters now have a low-oxygen season, or hypoxia season, just as the state’s forests have a fire season.

Hypoxia is a condition in which the ocean water close to the sea floor has such low levels of dissolved oxygen that the organisms living down there die.

Some of the first signs came in 2002 when dead crabs were hauled up in crab pots. Since then, scientists and crabbers say things have worsened."

Source: earthfix.info
Author: Kristian Foden-Vencil

Read the full article here.


Acid coastal seas off US putting common fish species at risk

"Scientists have shown that coastal waters and river estuaries can exhibit unique vulnerabilities to acidification than offshore waters. This acidification, detected in waters off the United States West Coast and the Gulf of Mexico, can lead to disorientation and cognitive problems in some marine fish species, such as salmon, sharks, and cod. This work is presented at the Goldschmidt Conference in Boston.
 

Scientists have recently discovered that marine creatures can be adversely affected by hypercapnia, a condition of too much dissolved CO2 in seawater (CO2 partial pressure, or pCO2). When this level rises above 1000 micro atmospheres (1000 μatm), some fish species suffer cognitive problems and disorientation, such as losing their way or even swimming towards predators. Surface ocean CO2 partial pressures tend to be around 400 μatm, so until now scientists have thought that hypercapnia was a problem which would only become apparent over time in subsurface waters. [...]"

Source: Phys.org

Read the full article here.


Deglacial upwelling, productivity and CO2 outgassing in the North Pacific Ocean

Abstract.

"The interplay between ocean circulation and biological productivity affects atmospheric CO2 levels and marine oxygen concentrations. During the warming of the last deglaciation, the North Pacific experienced a peak in productivity and widespread hypoxia, with changes in circulation, iron supply and light limitation all proposed as potential drivers. [...]"

Source: Nature Geoscience
Authors: William R. Gray et al.
DOI: 10.1038/s41561-018-0108-6

Read the full article here.


Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities

Abstract.

"Atmospheric carbon dioxide (CO2) data for the last 420 million years (My) show long-term fluctuations related to supercontinent cycles as well as shorter cycles at 26 to 32 My whose origin is unknown. Periodicities of 26 to 30 My occur in diverse geological phenomena including mass extinctions, flood basalt volcanism, ocean anoxic events, deposition of massive evaporites, sequence boundaries, and orogenic events and have previously been linked to an extraterrestrial mechanism. [...]

Source: Science Advances
Authors: R. Dietmar Müller and Adriana Dutkiewicz
DOI: 10.1126/sciadv.aaq0500

Read the full article here.


As CO2 Goes Up, Ocean Health Goes Down

"June 8th is World Oceans Day, a day to raise awareness of the ocean’s importance to the planet. 93 percent of the excess heat absorbed by the climate system goes into our oceans, creating major consequences. While more extreme storms and rising sea levels are some of the impacts of warmer oceans, rising CO2 levels and the resulting warmer oceans are impacting ocean health itself. The most well­known effects are coral bleaching and ocean acidification, but an emerging issue is the decreasing oxygen levels in the warming waters. [...]"

Source: Climate Central

Full article


Enhanced CO2 uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane

Abstract.

"Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea−air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (−33,300 ± 7,900 μmol m−2⋅d−1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea−air methane efflux (17.3 ± 4.8 μmol m−2⋅d−1).  [...]"

Source: Proceedings of the Nathional Academy of Sciences of the United States of America (PNAS)
Authors: John W. Pohlman et al.
DOI: 10.1073/pnas.1618926114

Full article


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here