News

Nitrite Oxidation Across the Full Oxygen Spectrum in the Ocean

Abstract. 

"Fixed nitrogen limits primary productivity in most areas of the surface ocean. Nitrite oxidation is the main source of nitrate, the most abundant form of inorganic fixed nitrogen. Even though known as an aerobic process, nitrite oxidation is not always stimulated by increased oxygen concentration, and nitrite oxidation occurs in layers of oxygen minimum zones (OMZs) where oxygen is not detectable. Nitrite-oxidizing bacteria, known since their original isolation as aerobes, were also detected in these layers. Whether and how nitrite oxidation is occurring in the anoxic seawater is debated. [...]".

 

Source: Wiley Online Library 
Authors: Xin Sun et al.
DOI: https://doi.org/10.1029/2022GB007548

Read the full article here.


Prokaryotic community dynamics and nitrogen-cycling genes in an oxygen-deficient upwelling system during La Niña and El Niño conditions

Abstract. 

"Dissolved oxygen regulates microbial distribution and nitrogen cycling and, therefore, ocean productivity and Earth's climate. To date, the assembly of microbial communities in relation to oceanographic changes due to El Niño Southern Oscillation (ENSO) remains poorly understood in oxygen minimum zones (OMZ). The Mexican Pacific upwelling system supports high productivity and a permanent OMZ. Here, the spatiotemporal distribution of the prokaryotic community and nitrogen-cycling genes was investigated along a repeated transect subjected to varying oceanographic conditions associated with La Niña in 2018 and El Niño in 2019. [...]".

 

Source: Wiley Online Library 
Authors: Silvia Pajares et al.
DOI: https://doi.org/10.1111/1462-2920.16362

Read the full article here.


Manganous water column in the Tethys Ocean during the Permian-Triassic transition

Abstract. 

"Ocean anoxia was one of the key killing mechanisms responsible for the end-Permian mass extinction (∼252 Ma). However, the temporal evolution and the triggering mechanisms of the end-Permian anoxia are controversial, with the current view being that the water column deoxygenation was a spatially and temporally heterogeneous event. Here, we use cerium-anomalies, uranium contents and rare earth element and yttrium (REY) compositions measured on the carbonate fraction of samples from two marine sections in Armenia and South China to constrain the evolution of end-Permian marine anoxia. [...]". 

 

Source: Science Direct
Authors: Johann Müller et al.
DOI: https://doi.org/10.1016/j.gloplacha.2023.104067 

Read the full article here.


Increasing hypoxia on global coral reefs under ocean warming

Abstract. 

"Ocean deoxygenation is predicted to threaten marine ecosystems globally. However, current and future oxygen concentrations and the occurrence of hypoxic events on coral reefs remain underexplored. Here, using autonomous sensor data to explore oxygen variability and hypoxia exposure at 32 representative reef sites, we reveal that hypoxia is already pervasive on many reefs. Eighty-four percent of reefs experienced weak to moderate (≤153 µmol O2 kg−1to ≤92 µmol O2 kg−1) hypoxia and 13% experienced severe (≤61 µmol O2 kg−1) hypoxia. Under different climate change scenarios based on four Shared Socioeconomic Pathways (SSPs) [...]".

 

Source: Nature 
Authors: Ariel K. Pezner et al.
DOI: https://doi.org/10.1038/s41558-023-01619-2

Read the full article here.


Oxygenation of the Earth aided by mineral–organic carbon preservation

Abstract. 

"Photosynthesis produces molecular oxygen, but it is the burial of organic carbon in sediments that has allowed this O2 to accumulate in Earth’s atmosphere. Yet many direct controls on the preservation and burial of organic carbon have not been explored in detail. For modern Earth, it is known that reactive iron phases are important for organic carbon preservation, suggesting that the availability of particulate iron could be an important factor for the oxygenation of the oceans and atmosphere over Earth history. Here we develop a theoretical model to investigate the effect of mineral–organic preservation on the oxygenation of the Earth, supported by a proxy [...]".

 

Source: Nature 
Authors: Mingyu Zhao et al.
DOI: https://doi.org/10.1038/s41561-023-01133-2

Read the full article here.


Basin-scale reconstruction of euxinia and Late Devonian mass extinctions

Abstract. 

"The Devonian–Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean–atmosphere oxidation states, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering, glacioeustasy, eutrophication and anoxic expansion in epicontinental seas, and mass extinction events. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). [...]".

 

Source: Nature 
Authors: Swapan K. Sahoo et al.
DOI: https://doi.org/10.1038/s41586-023-05716-2

Read the full article here.


Rare earth element signatures of Doushantuo cap dolostones capture an increase in oxygen in the anoxic Ediacaran ocean

Abstract. 

"The Rare Earth Element (REE) systematics of the post-Marinoan cap dolostones reflect the marine redox conditions and chemistry in the immediate aftermath of the snowball Earth. Rare earth elements and yttrium (REY) compositions in the Doushantuo cap dolostones that directly overlie Nantuo glacial diamictites in south China are determined from the inner shelf to the slope. In general, shale-normalized REY patterns (REYSN) of the cap dolostones show significant fractionations that are characterized by light REE depletion, slight middle REE enrichment relative to the light and heavy REEs, positive Eu anomalies, and slightly super-chondritic Y/Ho ratios. [...]".

 

Source: Science Direct
Authors: Min Ren & Ruifan Li
DOI: https://doi.org/10.1016/j.sedgeo.2023.106343

Read the full article here.


A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes

Abstract. 

"Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonasfrom the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0−4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. [...]".

 

Source: Nature
Authors: Massimiliano Molari et al.
DOI: https://doi.org/10.1038/s41564-023-01342-w

Read the full article here.


Drivers and Potential Consequences of Observed Extreme Hypoxia Along the Canadian Pacific Continental Shelf

Abstract. 

"Bottom waters of the northeast Pacific continental shelf naturally experience localized hypoxic conditions, with significant influences on food webs and biogeochemical cycling. In August 2021, extreme hypoxia was detected from several measurement platforms along the southern British Columbia continental shelf, with oxygen concentration <60 μmol kg−1, and a difference from the seasonal climatology of more than 2 standard deviations. Early and intense remote upwelling and local density shifts were associated with an anomalously strong spring phytoplankton bloom, which likely stimulated localized respiration of subsurface organic matter. [...]".

 

Source: Wiley Online Library 
Authors: Ana C. Franco et al.
DOI: https://doi.org/10.1029/2022GL101857

Read the full article here.


Pathways of N2O production by marine ammonia-oxidizing archaea determined from dual-isotope labeling

Abstract. 

"The ocean is a net source of the greenhouse gas and ozone-depleting substance, nitrous oxide (N2O), to the atmosphere. Most of that N2O is produced as a trace side product during ammonia oxidation, primarily by ammonia-oxidizing archaea (AOA), which numerically dominate the ammonia-oxidizing community in most marine environments. The pathways to N2O production and their kinetics, however, are not completely understood. Here, we use 15N and 18O isotopes to determine the kinetics of N2O production and trace the source of nitrogen (N) and oxygen (O) atoms in N2O produced by a model marine AOA species, Nitrosopumilus maritimus. [...]".

 

Source: Proceedings of the National Academy of Sciences
Authors: Xianhui S. Wan et al.
DOI: https://doi.org/10.1073/pnas.2220697120

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here