News
Increasing hypoxia on global coral reefs under ocean warming
Abstract.
"Ocean deoxygenation is predicted to threaten marine ecosystems globally. However, current and future oxygen concentrations and the occurrence of hypoxic events on coral reefs remain underexplored. Here, using autonomous sensor data to explore oxygen variability and hypoxia exposure at 32 representative reef sites, we reveal that hypoxia is already pervasive on many reefs. Eighty-four percent of reefs experienced weak to moderate (≤153 µmol O2 kg−1to ≤92 µmol O2 kg−1) hypoxia and 13% experienced severe (≤61 µmol O2 kg−1) hypoxia. Under different climate change scenarios based on four Shared Socioeconomic Pathways (SSPs) [...]".
Source: Nature
Authors: Ariel K. Pezner et al.
DOI: https://doi.org/10.1038/s41558-023-01619-2
A molecular perspective on the invasibility of the southern ocean benthos: The impact of hypoxia and temperature on gene expression
Abstract.
"When an organism makes a long-distance transition to a new habitat, the associated environmental change is often marked and requires physiological plasticity of larvae, juveniles, or other migrant stages. Exposing shallow-water marine bivalves (Aequiyoldia cf. eightsii) from southern South America (SSA) and the West Antarctic Peninsula (WAP) to changes in temperature and oxygen availability, we investigated changes in gene expression in a simulated colonization experiment of the shores of a new continent after crossing of the Drake Passage, and in a warming scenario in the WAP. [...]".
Source: Frontiers
Authors: Mariano Martínez et al.
DOI: https://doi.org/10.3389/fphys.2023.1083240
Warming, Acidification and Deoxygenation of the Ocean
Abstract.
"The ocean plays an essential role in regulating Earth’s climate. The ocean provides many services, but two crucial ones are its ability to take up heat and carbon dioxide (CO2) from the atmosphere and cycle both around the world in its vast currents, as well as store them away long term. The ocean is changing rapidly and often unnoticed by the general public. However, as the effects of climate change become more prevalent on the ocean, we will start to see a direct impact on human society. This chapter discusses three main climate change effects on the ocean: ocean warming, acidification, and loss of oxygen. [...]".
Source: Springer Nature
Authors: Helen S. Findlay
DOI: https://doi.org/10.1007/978-3-031-10812-9_2
Diverging Fates of the Pacific Ocean Oxygen Minimum Zone and Its Core in a Warming World
Abstract.
"Global ocean oxygen loss is projected to persist in the future, but Earth system models (ESMs) have not yet provided a consistent picture of how it will influence the largest oxygen minimum zone (OMZ) in the tropical Pacific. We examine the change in the Pacific OMZ volume in an ensemble of ESMs from the CMIP6 archive, considering a broad range of oxygen (O2) thresholds relevant to biogeochemical cycles and ecosystems (5–160 µmol/kg). Despite OMZ biases in the historical period of the simulations, the ESM ensemble projections consistently fall into three regimes across ESMs […]".
Source: Wiley Online Library
Authors: Julius J.M. Busecke et al.
DOI: https://doi.org/10.1029/2021AV000470
Investigating ocean deoxygenation and the oxygen minimum zone in the Central Indo Pacific region based on the hindcast datasets
Abstract.
"Deoxygenation is increasingly recognized as a significant environmental threat to the ocean following sea temperature rises due to global warming and climate change. Considering the cruciality of the deoxygenation impacts, it is important to assess the current status and predict the future possibility of ocean deoxygenation, for instance, within the Central Indo Pacific (CIP) regions represent climate-regulated marine areas. This study divided CIP into five regions then investigated the deoxygenation parameters (dissolved oxygen, temperature, salinity, and pH) collected from 1993 to 2021 sourced from in situ measurement and long-term hindcast data. [...]".
Source: Environmental Monitoring and Assessment
Authors: Karlina Triana et al.
DOI: https://doi.org/10.1007/s10661-022-10615-6
Impact of warming and deoxygenation on the habitat distribution of Pacific halibut in the Northeast Pacific
Abstract.
"Ocean warming and deoxygenation are already modifying the habitats of many aerobic organisms. Benthic habitat in the Northeast Pacific is sensitive to deoxygenation, as low oxygen concentrations occur naturally in continental shelf bottom waters. Here, we examine the potential impacts of deoxygenation and ocean warming on the habitat distribution of Pacific halibut (Hippoglossus stenolepis), one of the most commercially important groundfish in North America. [...]".
Source: Wiley Online Library
Authors: Ana C. Franco et al.
DOI: https://doi.org/10.1111/fog.12610
Marine anoxia linked to abrupt global warming during Earth’s penultimate icehouse
Abstract.
"Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO2) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO2 partial pressure and a biodiversity nadir. [...]".
Source: Proceedings of the National Academy of Sciences
Authors: Jitao Chen et al.
DOI: https://doi.org/10.1073/pnas.2115231119
A committed fourfold increase in ocean oxygen loss
Abstract.
"Less than a quarter of ocean deoxygenation that will ultimately be caused by historical CO2 emissions is already realized, according to millennial-scale model simulations that assume zero CO2 emissions from year 2021 onwards. About 80% of the committed oxygen loss occurs below 2000 m depth, where a more sluggish overturning circulation will increase water residence times and accumulation of respiratory oxygen demand. According to the model results, the deep ocean will thereby lose more than 10% of its pre-industrial oxygen content even if CO2 emissions and thus global warming[...]".
Source: Nature Communications
Authors: Andreas Oschlies
DOI: https://doi.org/10.1038/s41467-021-22584-4
Shallow marine ecosystem collapse and recovery during the Paleocene-Eocene Thermal Maximum
Abstract.
"The Paleocene-Eocene Thermal Maximum (PETM), the most well-studied transient hyperthermal event in Earth history, is characterized by prominent and dynamic changes in global marine ecosystems. Understanding such biotic responses provides valuable insights into future scenarios in the face of anthropogenic warming. However, evidence of the PETM biotic responses is largely biased towards deep-sea records, whereas shallow-marine evidence remains scarce and elusive. Here we investigate a shallow-marine microfaunal record from Maryland, eastern United States, to comprehensively document the shallow-marine biotic response to the PETM. We applied birth-death modeling to estimate the local diversity dynamics[...]"
Source: Elsevier
Authors: Skye Yunshu Tian et al.
DOI: https://doi.org/10.1016/j.gloplacha.2021.103649
Fifty Year Trends in Global Ocean Heat Content Traced to Surface Heat Fluxes in the Sub-Polar Ocean
Abstract.
"The ocean has absorbed approximately 90% of the accumulated heat in the climate system since 1970. As global warming accelerates, understanding ocean heat content changes and tracing these to surface heat input is increasingly important. We introduce a novel framework by organizing the ocean into temperature-percentiles from warmest to coldest, allowing us to trace ocean temperature changes to changes[...]"
Source: AGU- Advancing Earth And Space Science
Authors: Taimoor Sohail et al.
DOI: https://doi.org/10.1029/2020GL091439
Newsletter
It is possible to subscribe to our email newsletter list.
Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.
If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".
If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".
You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.
Upcoming Events
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
28 | 29 | 30 | 31 | 1 | 2 | 3 |
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 1 |
- 4
- ASLO Aquatic Sciences Meeting 2023
- 5
- ASLO Aquatic Sciences Meeting 2023
- 6
- ASLO Aquatic Sciences Meeting 2023
- 7
- ASLO Aquatic Sciences Meeting 2023
- 8
- ASLO Aquatic Sciences Meeting 2023
- 13
- Launch webinar of European Marine Board publication on Ocean Oxygen
- 19
- GO2NE Webinar on Ocean Deoxygenation