News

The soundscape of the Anthropocene ocean

Abstract.

"Oceans have become substantially noisier since the Industrial Revolution. Shipping, resource exploration, and infrastructure development have increased the anthrophony (sounds generated by human activities), whereas the biophony (sounds of biological origin) has been reduced by hunting, fishing, and habitat degradation. Climate change is affecting geophony (abiotic, natural sounds). Existing evidence shows that anthrophony affects marine animals[...]".

 

Source: Science
Authors: Carlos M. Duarte et al.
DOI: 10.1126/science.aba4658

Read the full article here.


System controls of coastal and open ocean oxygen depletion

Abstract.

"The epoch of the Anthropocene, a period during which human activity has been the dominant influence on climate and the environment, has witnessed a decline in oxygen concentrations and an expansion of oxygen-depleted environments in both coastal and open ocean systems since the middle of the 20th century. This paper provides a review of system-specific drivers of low oxygen in a range of case studies representing marine systems in the open ocean, on continental shelves, in enclosed seas[...]".

 

Source: Science Direct
Authors: Grant C. Pitcher
DOI: https://doi.org/10.1016/j.pocean.2021.102613

Read the full article here.


Variable coastal hypoxia exposure and drivers across the southern California Current

Abstract.

"Declining oxygen is one of the most drastic changes in the ocean, and this trend is expected to worsen under future climate change scenarios. Spatial variability in dissolved oxygen dynamics and hypoxia exposures can drive differences in vulnerabilities of coastal ecosystems and resources, but documentation of variability at regional scales is rare in open-coast systems. Using a regional collaborative network of dissolved oxygen and temperature sensors maintained by scientists and fishing cooperatives from California, USA, and Baja California, Mexico, we characterize spatial and temporal variability in dissolved oxygen[...]"

 

Source: Nature Scientific Reports
Authors: Natalie H. N. Low et al.
DOI: https://doi.org/10.1038/s41598-021-89928-4

Read the full article here.


Redox control on the tungsten isotope composition of seawater

Abstract.

"Free oxygen represents an essential basis for the evolution of complex life forms on a habitable Earth. The isotope composition of redox-sensitive trace elements such as tungsten (W) can possibly trace the earliest rise of oceanic oxygen in Earth’s history. However, the impact of redox changes on the W isotope composition of seawater is still unknown. Here, we report highly variable W isotope compositions in the water column of a redox-stratified basin (δ186/184W between +0.347 and +0.810 ‰) that contrast with the homogenous W isotope composition of the open ocean[...]"

 

Source: PNAS- Proceedings of the National Academy of Sciences of the United States of America
Authors: Florian Kurzweil et al.
DOI: https://doi.org/10.1073/pnas.2023544118

Read the full article here.


Coastal eutrophication drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system

Abstract.

"Global change is leading to warming, acidification, and oxygen loss in the ocean. In the Southern California Bight, an eastern boundary upwelling system, these stressors are exacerbated by the localized discharge of anthropogenically enhanced nutrients from a coastal population of 23 million people. Here, we use simulations with a high-resolution, physical–biogeochemical model to quantify the link between terrestrial [...]"

 

Source: PNAS- Proceedings of the National Academy of Sciences of the United States of America
Authors: Faycal Kessouri et al.
DOI: https://doi.org/10.1073/pnas.2018856118

Read the full article here.

 


The effects of historical ozone changes on Southern Ocean heat uptake and storage

Abstract.

"Atmospheric ozone concentrations have dramatically changed in the last five decades of past century. Herein we explore the effects of historical ozone changes that include stratospheric ozone depletion on Southern Ocean heat uptake and storage, by comparing CESM1 large ensemble simulations with fixed-ozone experiment. During 1958–2005, the ozone changes contribute to about 50% of poleward intensification of the Southern Hemisphere westerly winds in historical simulations, which intensifies the Deacon Cell and residual meridional overturning circulation, thus contributing to heat redistribution[...]"

 

Source: Climate Dynamics
Authors: Shouwei Li et al.
DOI: https://doi.org/10.1007/s00382-021-05803-y

Read the full article here.


Dissolved Organic Matter in the Upwelling System off Peru: Imprints of Bacterial Activity and Water Mass Characteristics

Abstract.

"Microbial degradation of dissolved organic matter (DOM) contributes to the formation and preservation of oxygen minimum zones (OMZs) in the ocean, but information on the spatial distribution and molecular composition of DOM in OMZ regions is scarce. We quantified molecular components of DOM that is, dissolved amino acids (DAA) and dissolved combined carbohydrates (DCCHO), in the upwelling region off Peru. We found the highest concentrations of DCCHO in fully oxygenated[...]"

 

Source: Advancing Earth and Space Science
Authors: Anja Engel et al.
DOI: https://doi.org/10.1029/2020JG006048

Read the full article here.


The poleward enhanced Arctic Ocean cooling machine in a warming climate

Abstract.

"As a cooling machine of the Arctic Ocean, the Barents Sea releases most of the incoming ocean heat originating from the North Atlantic. The related air-sea heat exchange plays a crucial role in both regulating the climate and determining the deep circulation in the Arctic Ocean and beyond. It was reported that the cooling efficiency of this cooling machine has decreased significantly. In this study, we find that the overall cooling efficiency did not really drop: When the cooling efficiency decreased in the southern Barents Sea[...]"

 

Source: Nature Communications
Authors: Qi Shu et al.
DOI: https://doi.org/10.1038/s41467-021-23321-7

Read the full article here.


Rain-fed streams dilute inorganic nutrients but subsidise organic-matter-associated nutrients in coastal waters of the northeast Pacific Ocean

Abstract.

"In coastal regions, rivers and streams may be important sources of nutrients limiting to primary production in marine waters; however, sampling is still rarely conducted across the land-to-ocean aquatic continuum, precluding conclusions from being drawn about connectivity between freshwater and marine systems. Here we use a more-than-4-year dataset (2014–2018) of nutrients (nitrogen, phosphorus, silica, iron) and dissolved organic carbon spanning streams draining coastal watersheds and nearshore marine surface waters along the Central Coast of British Columbia, Canada, at the heart of the North Pacific coastal temperate[...]"

 

Source: Biogeosciences
Authors: Kyra A. St. Pierre et al.
DOI: https://doi.org/10.5194/bg-18-3029-2021

Read the full article here.


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here