News

Nitrogen – ocean plastics pollution’s forgotten neighbour

"Tremendous – and deserved - attention has been paid for the last few years to the scourge of ocean plastics pollution, which we now know reaches the farthest depths of the ocean and can have impacts on ocean life from the smallest plankton to the largest whales.  We know (Jambeck et al., 2015) that some 4.8 million to 12.7 million metric tonnes of plastic enter the ocean each year. UN Environment has estimated the socio-economic costs of ocean plastics pollution at about US$13 billion per year.  We are only beginning to explore and understand the potential human health impacts of plastics in the oceanic food chain. [...]"

Source: United Nations Development Programme
Author: Andrew Hudson

Read the full article here.


Annual plankton community metabolism in estuarine and coastal waters in Perth (Western Australia)

Abstract.

"The planktonic metabolic balance that is the balance between gross primary production (GPP) and community respiration (CR) was determined in Matilda Bay (estuarine) and Woodman Point (coastal) in Perth, Western Australia. The rates of net community production (NCP = GPP – CR) and the ratio between GPP and CR (P/R) were assessed to evaluate whether the metabolic balance in the two coastal locations tends to be net autotrophic (production exceeding community respiration) or net heterotrophic (respiration exceeding production).  [...]"

Source: PeerJ
Authors: Susana Agusti, Lorena Vigoya, Carlos Manuel Duarte
DOI: 10.7717/peerj.5081

Read the full article here.


Changing storminess and global capture fisheries

"Climate change-driven alterations in storminess pose a significant threat to global capture fisheries. Understanding how storms interact with fishery social-ecological systems can inform adaptive action and help to reduce the vulnerability of those dependent on fisheries for life and livelihood."

Source: Nature Climate Change
Authors: Nigel C. Sainsbury et al.
DOI: 10.1038/s41558-018-0206-x

Read the full article here.


Accurate estimation of net community production from O2/Ar measurements

Abstract.

"Under physically isolated conditions, net community production (NCP) can be accurately estimated from the rate of oxygen evasion to the atmosphere derived from local mixed layer oxygen/argon measurements. We use a simple box model to demonstrate that, when physical inputs are negligible, the sea‐to‐air flux of biological oxygen (bioflux) represents the average NCP exponentially weighted over the past several residence times of oxygen in the mixed layer. This new weighting scheme shows that there is no apparent lag between bioflux and exponentially‐weighted time‐averaged NCP.  [...]"

Source: Global Biogeochemical Cycles
Authors: Lianna Teeter et al.
DOI: 10.1029/2017GB005874

Read the full article here.


Extensive marine anoxia during the terminal Ediacaran Period

Abstract.

"The terminal Ediacaran Period witnessed the decline of the Ediacara biota (which may have included many stem-group animals). To test whether oceanic anoxia might have played a role in this evolutionary event, we measured U isotope compositions (δ238U) in sedimentary carbonates from the Dengying Formation of South China to obtain new constraints on the extent of global redox change during the terminal Ediacaran. [...]"

Source: Science Advances
Authors: Feifei Zhang et al.
DOI: 10.1126/sciadv.aan8983

Read the full article here.


Chesapeake Bay: Larger-than-average summer 'dead zone' forecast for 2018 after wet spring

"Ecologists from the University of Michigan and the University of Maryland Center for Environmental Science are forecasting a larger-than-average Chesapeake Bay "dead zone" in 2018, due to increased rainfall in the watershed this spring.
 

This summer's Chesapeake Bay hypoxic or dead zone, an area of low to no oxygen that can kill fish and other aquatic life, is expected to be about 1.9 cubic miles (7.9 cubic kilometers), according to the forecast released today by the two universities. [...]"

Source: Phys.org

Read the full article here.


The devil's in the disequilibrium: multi-component analysis of dissolved carbon and oxygen changes under a broad range of forcings...

...in a general circulation model

Abstract.

"The complexity of dissolved gas cycling in the ocean presents a challenge for mechanistic understanding and can hinder model intercomparison. One helpful approach is the conceptualization of dissolved gases as the sum of multiple, strictly defined components. Here we decompose dissolved inorganic carbon (DIC) into four components: saturation (DICsat), disequilibrium (DICdis), carbonate (DICcarb), and soft tissue (DICsoft). The cycling of dissolved oxygen is simpler, but can still be aided by considering O2, O2sat, and O2dis. [...]"

Source: Biogeosciences
Authors: Sarah Eggleston and Eric D. Galbraith
DOI: 10.5194/bg-15-3761-2018

Read the full article here.


Diapycnal dissolved organic matter supply into the upper Peruvian oxycline

Abstract.

"The Eastern Tropical South Pacific (ETSP) hosts the Peruvian upwelling system, which represents one of the most productive areas in the world ocean. High primary production followed by rapid heterotrophic utilization of organic matter supports the formation of one of the most intense oxygen minimum zones (OMZ) in the world ocean where dissolved oxygen (O2) concentrations reach well below 1 µmol kg−1. The high productivity leads to an accumulation of dissolved organic matter (DOM) in the surface layers that may serve as a substrate for heterotrophic respiration.  [...]"

Source: Biogeosciences
Authors: Alexandra N. Loginova et al.
DOI: 10.5194/bg-2018-284

Read the full article here.


Ventilation of oxygen to oxygen minimum zone due to anticyclonic eddies in the Bay of Bengal

Abstract.

"Intense oxygen minimum zone (OMZ) occurs in the mid‐depth of the Eastern Tropical Pacific (ETP), Arabian Sea (AS), and Bay of Bengal (BoB). However, the occurrence of anammox/denitrification was reported only in the ETP and AS and its absence in the BoB is attributed to presence of traces of dissolved oxygen (DO). Anticyclonic Eddies (ACE) supply high nutrient, organic‐rich and oxygen poor waters from the coastal upwelling regions leading to strengthening of OMZ in the offshore of AS and ETP.  [...]"

Source: Biogeosciences
Authors: V. V. S. S. Sarma, T. V. S. Udaya Bhaskar
DOI: 10.1029/2018JG004447

Read the full article here.


Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets

Abstract.

"Ocean deoxygenation is recognized as key ecosystem stressor of the future ocean and associated climate-related ocean risks are relevant for current policy decisions. In particular, benefits of reaching the ambitious 1.5 °C warming target mentioned by the Paris Agreement compared to higher temperature targets are of high interest. Here, we model oceanic oxygen, warming and their compound hazard in terms of metabolic conditions on multi-millennial timescales for a range of equilibrium temperature targets. [...]"

Source: Earth System Dynamics
Authors: Gianna Battaglia and Fortunat Joos
DOI: 10.5194/esd-9-797-2018

Read the full article here.


Showing 1 - 10 of 15 results.
Items per Page 10
of 2

Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here