News

Dark carbon fixation in the Arabian Sea oxygen minimum zone contributes to sedimentary organic carbon (SOM)

Abstract.

"In response to rising CO2 concentrations and increasing global sea surface temperatures, oxygen minimum zones (OMZ), or “dead zones”, are expected to expand. OMZs are fueled by high primary productivity, resulting in enhanced biological oxygen demand at depth, subsequent oxygen depletion, and attenuation of remineralization. This results in the deposition of organic carbon‐rich sediments. Carbon drawdown is estimated by biogeochemical models; however, a major process is ignored: carbon fixation in the mid‐ and lower water column. [...]"

Source: Global Biogeochemical Cycles
Authors: Sabine K. Lengger et al.
DOI: 10.1029/2019GB006282

Read the full article here.


Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high‐latitude Southern Ocean

Abstract.

"Although the Southern Ocean is thought to account for a significant portion of the contemporary oceanic uptake of carbon dioxide (CO2), flux estimates in this region are based on sparse observations that are strongly biased towards summer. Here we present new estimates of Southern Ocean air‐sea CO2 fluxes calculated with measurements from biogeochemical profiling floats deployed by the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project during 2014‐2017. Compared to ship‐based CO2 flux estimates, the float‐based fluxes find significantly stronger outgassing in the zone around Antarctica where carbon‐rich deep waters upwell to the surface ocean.  [...]"

Source: Geophysical Research Letters
Authors: Alison R. Gray et al.
DOI: 10.1029/2018GL078013

Read the full article here.


Nutrients that limit growth in the ocean

Abstract.

"Phytoplankton form the basis of the marine food web and are responsible for approximately half of global carbon dioxide (CO2) fixation (∼ 50 Pg of carbon per year). Thus, these microscopic, photosynthetic organisms are vital in controlling the atmospheric CO2 concentration and Earth’s climate. Phytoplankton are dependent on sunlight and their CO2-fixation activity is therefore restricted to the upper, sunlit surface ocean (that is, the euphotic zone). CO2 usually does not limit phytoplankton growth due to its high concentration in seawater. [...]"

Source: Current Biology
Authors: Laura A. Bristow
DOI: 10.1016/j.cub.2017.03.030

Full article


Newsletter

It is possible to subscribe to our email newsletter list.

Depending on the amount of publications, we will summarize the activities on this blog in a newsletter for everyone not following the blog regularly.

If you want to subscribe to the email list to receive the newsletter, please send an email to sfb754@geomar.de with the header "subscribe".

If you want to unsubscribe from the newsletter, please send an email to sfb754@geomar.de with the header "unsubscribe".

You cannot forward any messages as a regular member to the list. If you want to suggest new articles or would like to contact us because of any other issue, please send an email to sfb754@geomar.de.

GOOD Social Media

To follow GOOD on LinkedIn, please visit here.
 

To follow GOOD on Twitter, please visit here.


To follow GOOD on Blue Sky, please visit here